首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3291篇
  免费   267篇
  国内免费   3篇
工业技术   3561篇
  2024年   5篇
  2023年   36篇
  2022年   54篇
  2021年   266篇
  2020年   113篇
  2019年   105篇
  2018年   129篇
  2017年   129篇
  2016年   161篇
  2015年   142篇
  2014年   149篇
  2013年   236篇
  2012年   220篇
  2011年   273篇
  2010年   196篇
  2009年   195篇
  2008年   168篇
  2007年   144篇
  2006年   140篇
  2005年   100篇
  2004年   88篇
  2003年   70篇
  2002年   53篇
  2001年   38篇
  2000年   29篇
  1999年   37篇
  1998年   41篇
  1997年   34篇
  1996年   31篇
  1995年   13篇
  1994年   25篇
  1993年   12篇
  1992年   10篇
  1991年   5篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   12篇
  1984年   8篇
  1983年   17篇
  1982年   8篇
  1981年   9篇
  1980年   12篇
  1979年   7篇
  1978年   3篇
  1977年   9篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
排序方式: 共有3561条查询结果,搜索用时 20 毫秒
991.
Over the past decade there have been many investigations aimed at defining the role of scientists and research groups in their coauthorship networks. Starting from the assumptions of network analysis, in this work we propose an analytical definition of a collaboration potential between authors of scientific papers based on both coauthorships and content sharing. The collaboration potential can also be considered a useful tool to investigate the relationships between a single scientist and research groups, thus allowing for the identification of characteristic “types” of scientists (integrated, independent, etc.). We computed the collaboration potential for a set of authors belonging to research groups of an institute specialized in the field of Medical Genetics. The methods presented in the paper are rather general as they can be applied to compute a collaboration potential for a network of cooperating actors in every situation in which one can qualify the content of some activities and which of them are in common among the actors of the network.  相似文献   
992.
Biomedical image analysis workstations can be linked to 3D data-oriented devices for a new approach to image manipulation in biology and medicine. Stereo monitors allow an intuitive approach to medical diagnosis. The use of 3D head-tracking devices allows a more compelling 3D illusion to be generated. A stylus can be used as an electronic knife for dissecting a 3D data set; furthermore, other 3D sensors are available for tracking operator arm movements. The overall character of this work is firmly application oriented, in order to provide concrete operational tools to the medical user. Such tools range from diagnostic up to therapeutic and robotized use of bioimages.  相似文献   
993.
Rapid prototyping methods for the design and fabrication of polymeric labs-on-a-chip are on the rise, as they allow high degrees of precision and flexibility. For example, a microfluidic platform may require an optimization phase in which it could be necessary to continuously modify the architecture and geometry; however, this is only possible if easy, controllable fabrication methods and low-cost materials are available. In this paper, we describe the realization process of a microfluidic tool, from the computer-aided design (CAD) to the proof-of-concept application as a capture device for circulating tumor cells (CTCs). The entire platform was realized in polymethyl methacrylate (PMMA), combining femtosecond (fs) laser and micromilling fabrication technologies. The multilayer device was assembled through a facile and low-cost solvent-assisted method. A serpentine microchannel was then directly biofunctionalized by immobilizing capture probes able to distinguish cancer from non-cancer cells without labeling. The low material costs, customizable methods, and biological application of the realized platform make it a suitable model for industrial exploitation and applications at the point of care.  相似文献   
994.
Low-power photon upconversion (UC) based on sensitized triplet–triplet annihilation (sTTA) is considered as the most promising upward wavelength-shifting technique to enhance the light-harvesting capability of solar devices. Colloidal nanocrystals (NCs) with conjugated organic ligands have been recently proposed to extend the limited light-harvesting capability of molecular absorbers. Key to their functioning is efficient energy transfer (ET) from the NC to the triplet state of the ligands that sensitize free annihilator moieties responsible for the upconverted luminescence. The ET efficiency is typically limited by parasitic processes, above all nonradiative hole-transfer to the ligand highest occupied molecular orbital (HOMO). Here, a new exciton-manipulation approach is demonstrated that enables loss-free ET by electronically doping CdSe NCs with gold impurities that introduce a hole-accepting intragap state above the HOMO energy of 9-anthracene acid ligands. Upon photoexcitation, the NC photoholes are rapidly routed to the Au-level, producing a long-lived bound exciton in perfect resonance with the ligand triplet. This hinders hole-transfer leading to ≈100% efficient ET that translates into an upconversion quantum yield as high as ≈12% (≈24% in the normalized definition), which is the highest performance for NC-based upconverters based on sTTA to date and approaches the record efficiency of optimized organic systems.  相似文献   
995.
Food engineering faces the difficult challenge of combining taste, i.e., tailoring texture and rheology of food matrices with the balanced intake of healthy nutrients. In materials science, fiber suspensions and composites have been developed as a versatile and successful approach to tailor rheology while imparting materials with added functionalities. Structures based on such types of physical (micro)fibers are however rare in food production mainly due to a lack of food‐grade materials and processes allowing for the fabrication of fibers with controlled sizes and microstructures. Here, the controlled fabrication of multi‐material microstructured edible fibers is demonstrated using a food compatible process based on preform‐to‐fiber thermal drawing. It is shown that different material systems based on gelatin or casein, with plasticizers such as glycerol, can be thermally drawn into fibers with various geometries and cross‐sectional structures. It is demonstrated that fibers can exhibit tailored mechanical properties post‐drawing, and can encapsulate nutrients to control their release. The versatility of fiber materials is also exploited to demonstrate the fabrication of food‐grade fabrics and scaffolds for food growth. The end results establish a new field in food production that relies on fiber‐based simple and eco‐friendly processes to realize enjoyable yet healthy and nutritious products.  相似文献   
996.
Biological properties of olive oil phytochemicals   总被引:1,自引:0,他引:1  
Olive oil is the principal source of fat in the Mediterranean diet, which has been associated with a lower incidence of coronary heart disease and certain cancers. Extra-virgin olive oil contains a considerable amount of phenolic compounds, for example, hydroxytyrosol and oleuropein, that are responsible for its peculiar taste and for its high stability. Evidence is accumulating to demonstrate that olive oil phenolics are powerful antioxidants, both in vitro and in vivo; also, they exert other potent biological activities that could partially account for the observed healthful effects of the Mediterranean diet.  相似文献   
997.
The local-minima question that arises in the framework of a quadratic approach to inverse-scattering problems is investigated. In particular, a sufficient condition for the absence of local minima is given, and some guidelines to ensure the reliability of the algorithm are outlined for the case of data not belonging to the range of the relevant quadratic operator. This is relevant also when an iterated solution procedure based on a quadratic approximation of the electromagnetic scattering at each step is considered.  相似文献   
998.
The achievable depth resolution in reconstructing the permittivity profile of a dielectric strip under the Born approximation when data are collected in the Fresnel zone is studied. We consider a rectilinear measurement aperture and an orthogonal and centered rectilinear investigation domain. The roles of the aperture extent and frequency diversity are highlighted.  相似文献   
999.
Poor interlayer bonding can lead to early failures and thus to a reduction in service life of bituminous pavements. For this reason, it is important to identify the parameters influencing the interlayer shear failure and to characterize their effect by means of laboratory test. In particular, this study is focussed on the effects of test temperature and deformation rate on the interlayer shear strength (ISS) of double-layered asphalt concrete specimens. First, the ISS was measured at temperatures ranging from 0 °C to 30 °C and deformation rates ranging from 0.5 mm/min to 9 mm/min using the Ancona Shear Testing Research and Analysis (ASTRA) device. Then the experimental data were analyzed using a two-stage statistical modelling approach. In the first stage, the variation of ISS versus deformation rate, at each testing temperature, was modelled using both a power-law and a logarithmic function. In the investigated range of deformation rate, the models allowed to estimate the mean ISS with residual standard error varying from 0.062 MPa to 0.128 MPa. Moreover, the linear regression coefficients, which measure the influence of the deformation rate on ISS, changed with temperature. In the second stage, both temperature and deformation rate were used as joint predictors of ISS by using an approach based on the superposition of their effects. Results showed that the time–temperature superposition approach is applicable and a sigmoid-shaped master curve for ISS was obtained. The proposed approach was validated by using ISS measurements obtained on the same materials with different test devices.  相似文献   
1000.
The generation of a confluent and functional endothelium at the luminal surface of cardiovascular devices represents the ideal solution to avoid contact between blood and synthetic materials thus allowing the long‐term body integration of the implants. Due to the foreseen paucity of source cells in cardiovascular patients, surface engineering strategies to achieve full endothelialization, while minimizing the amount of endothelial cells required to seed the surface leading to prompt and full coverage with an endothelium are necessary. A stable endothelialization is the result of the interplay between endothelial cells, the flow‐generated walls shear stress and the substrate topography. Here a novel strategy is designed and validated based on the use of engineered surface textures combined with confined islands of seeded endothelial cells. Upon release of the confinement, the cell island populations are able to migrate on the texture and merge under physiological flow conditions to promptly generate a fully connected endothelium. The interaction between endothelial cells and surface textures supports the process of endothelialization through the stabilization of cell‐to‐substrate adhesions and cell‐to‐cell junctions. It is shown that with this approach, when ≈50% of a textured surface is initially covered with cell seeding, the time to full endothelialization compared to an untextured surface is almost halved, underpinning the viability and effectiveness of the method for the quick and stable coverage of cardiovascular implants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号