首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   5篇
工业技术   113篇
  2023年   3篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   9篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   9篇
  2008年   2篇
  2007年   1篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  1997年   1篇
排序方式: 共有113条查询结果,搜索用时 46 毫秒
11.
The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81?kg/mm2 tensile strength and 2.47?N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.  相似文献   
12.
Fibrous monoliths (FMs) exhibit graceful failure in flexure and have higher toughness values. In this research, a mixture of Al2O3 and SiC as the core and graphite as the shell material of fibers were produced by extrusion-molding technique and after aligning along intended directions (0°, 90°, and 0°/90°) were sintered using the hot-pressing method at the temperature of 1500°C under pressure of 35 MPa for 1 hour. The significance of fibers orientation angle and the cell to cell boundary volume ratio in defining the fracture behavior of the FMs was detected. Because of the extensive crack interactions with graphite cell boundary such as crack deflection and delamination, with increasing cell boundary content from 25 to 30 vol%, the fracture toughness was enhanced. The highest flexural strength (184.8 ± 0.61 MPa) obtained from samples with 0° fibers orientation compared to 0°/90°. Since in the transverse plies (layers with 90° aligning), the properties of matrix phase are dominant, hence the strength in specimens with 0°/90° fibers orientation decreased considerably due to weak graphite matrix phase. In addition, the fracture toughness value increased up to 8.35 ± 0.74 MPa·m1/2 for the unidirectional architecture of (0°) in comparison with cross-ply (0°/90°) architecture.  相似文献   
13.
Water Resources Management - Concerning the various effects of climate change on intensifying extreme weather phenomena all around the world, studying its possible consequences in the following...  相似文献   
14.
Protection of Metals and Physical Chemistry of Surfaces - The present study deals with the application of activated carbon for the adsorptive removal of Cu(II) from its aqueous solutions. This...  相似文献   
15.
16.
The surging interest in high performance, low‐cost, and safe energy storage devices has spurred tremendous research efforts in the development of advanced electrode active materials. Herein, the in situ growth of zinc–iron layered double hydroxide (Zn–Fe LDH) on graphene aerogel (GA) substrates through a facile, one‐pot hydrothermal method is reported. The strong interaction and efficient electronic coupling between LDH and graphene substantially improve interfacial charge transport properties of the resulting nanocomposite and provide more available redox active sites for faradaic reactions. An LDH–GA||Ni(OH)2 device is also fabricated that results in greatly enhanced specific capacity (187 mAh g?1 at 0.1 A g?1), outstanding specific energy (147 Wh kg?1), excellent specific power (16.7 kW kg?1), along with 88% capacity retention after >10 000 cycles. This approach is further extended to Ni–MH and Ni–Cd batteries to demonstrate the feasibility of compositing with graphene for boosting the energy storage performance of other well‐known Ni‐based batteries. In contrast to conventional Ni‐based batteries, the nearly flat voltage plateau followed by a sloping potential profile of the integrated supercapacitor–battery enables it to be discharged down to 0 V without being damaged. These findings provide new prospects for the design of high‐performance and affordable superbatteries based on earth‐abundant elements.  相似文献   
17.
In the present study, aluminum nitride-carbon (AlN-C) nanocomposites are synthesized through a green, facile and inexpensive mechanochemical route. Well-dispersed nanofluids are prepared by milling of nanocomposite in ethylene glycol (EG) without using any surfactants/ dispersants. The resulting nanofluids have an excellent stability with no obvious sedimentation for at least three months. The results confirm the in-situ polymerization of EG on AlN surface and the formation of hyperbranched glycerol upon milling which in turn stabilizes the particles through a steric effect. The working nanofluids with very low loadings of up to 0.22 vol% of powder exhibit an enhanced heat transfer coefficient (h) of about 24% compared to that of the base fluid in a laminar flow regime (Re = 160). Brownian motion and boundary layer thinning are known as the main mechanisms, causing for this enhancement.  相似文献   
18.
Fe3O4 nanoparticles were prepared through solvo-thermal method for further heat transfer applications. TEM, XRD, TGA, and VSM were applied to characterize the obtained nanoparticles. XRD pattern confirmed that nanoparticles were composed of 6-nm crystallites; however, TEM images showed the formation of ca. 75-nm highly dispersed magnetite clusters, made up of about 6-nm nanoparticles. Since, VSM analysis confirmed the superparamagnetic characteristics of Fe3O4 nanoclusters, heat transfer properties of the resulting nanofluids were studied to investigate the influence of the magnetic field on the behavior of the magnetite-based nanofluids. The findings indicated that the convective heat transfer coefficient increased up to 48% and 15%, respectively, for nanofluids containing 0.005 wt% magnetite particles dispersed in water and EG, when the frequency of the alternating magnetic field was changed from 50 Hz to 1 MHz. According to the results, compared to the water-based nanofluids, at higher field amplitudes, the h enhancements of EG-based ones were more pronounced, for instance, at H0 = 36,000 A/m, the h measurements are augmented by about 74% and 109%, respectively, compared to the water and EG as the base fluids. These findings could be explained by the use of specific lost powers of the nanofluids in the exposure of an external alternating magnetic field.  相似文献   
19.
A low cost supercritical CO2 foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO2 and by the formation of a porous structure following the escape of CO2 from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO2 saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.  相似文献   
20.
In this work, Ni–Co alloy coating on the surface of glassy carbon (GC) electrode was performed by cyclic voltammetry. The results showed that the deposition of Ni–Co is an anomalous process. The deposition bath was prepared according to the metal ion Ni/Co ratio of 4:1 using NiSO4·7H2O and CoSO4·8H2O, and the total concentration of all solutions was 40.0 mM. The pH of the bath solution was adjusted at 2.0 using boric acid at room temperature. The modified electrode was conditioned by potential recycling in a potential range of 100–700 mV (vs. Ag/AgCl) by cyclic voltammetric method in an alkaline solution. The Ni–Co modified electrode showed a higher activity towards methanol oxidation in the Ni (III) and Co (IV) oxidation states. Cyclic voltammetry was used for the electrochemical characterization of the Ni–Co modified electrode and the mechanism of methanol oxidation is proposed. The result of double steps chronoamperometry shows that the methanol electrooxidation is an irreversible reaction. Moreover, the effects of various parameters such as mole ratio of Ni–Co in the alloy in modification step, potential scan rate, methanol concentration and solution temperature on the electro-oxidation of methanol have also been investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号