首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17221篇
  免费   2640篇
  国内免费   6篇
工业技术   19867篇
  2023年   626篇
  2022年   310篇
  2021年   681篇
  2020年   672篇
  2019年   597篇
  2018年   567篇
  2017年   399篇
  2016年   634篇
  2015年   798篇
  2014年   833篇
  2013年   1426篇
  2012年   564篇
  2011年   434篇
  2010年   798篇
  2009年   944篇
  2008年   429篇
  2007年   404篇
  2006年   289篇
  2005年   293篇
  2004年   242篇
  2003年   239篇
  2001年   136篇
  1998年   217篇
  1997年   154篇
  1996年   214篇
  1995年   201篇
  1994年   175篇
  1993年   238篇
  1992年   159篇
  1990年   154篇
  1989年   174篇
  1988年   135篇
  1987年   166篇
  1986年   182篇
  1985年   170篇
  1984年   169篇
  1983年   178篇
  1982年   161篇
  1981年   199篇
  1980年   167篇
  1979年   169篇
  1977年   154篇
  1976年   153篇
  1975年   204篇
  1974年   189篇
  1973年   365篇
  1972年   215篇
  1971年   150篇
  1970年   144篇
  1968年   141篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
This article discloses a new horizon for the application of peroxides in medical chemistry. Stable cyclic peroxides are demonstrated to have cytotoxic activity against cancer cells; in addition a mechanism of cytotoxic action is proposed. Synthetic bridged 1,2,4,5-tetraoxanes and ozonides were effective against HepG2 cancer cells and some ozonides selectively targeted liver cancer cells (the selectivity indexes for compounds 11 b and 12 a are 8 and 5, respectively). In some cases, tetraoxanes and ozonides were more selective than paclitaxel, artemisinin, and artesunic acid. Annexin V flow-cytometry analysis revealed that the active ozonides 22 a and 23 a induced cell death of HepG2 by apoptosis. Further study showed that compounds 22 a and 23 a exhibited a strong inhibitory effect on P-glycoprotein (P-gp/ABCB5)-overexpressing HepG2 cancer cells. ABCB5 is a key player in the multidrug-resistant phenotype of liver cancer. Peroxides failed to demonstrate a direct correlation between oxidative potential and their biological activity. To our knowledge this is the first time that peroxide diastereoisomers have been found to show stereospecific antimalarial action against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Stereoisomeric ozonide 12 b is 11 times more active than stereoisomeric ozonide 12 a (IC50=5.81 vs 65.18 μm ). Current findings mean that ozonides merit further investigation as potential therapeutic agents for drug-resistant hepatocellular carcinoma.  相似文献   
62.
63.
A previously designed and developed 12-step total synthesis that includes [1,1′-biphenyl]-2-amine and carbazole intermediates and that ultimately produces the carbazole alkaloid carbazomycin G was exploited as a screening compound library with the goal of identifying potential lead compound(s) with cytotoxic effect. These compounds were investigated by using in-vitro tests involving the two human cell lines HL-60 and MOLM-13, which both model acute myeloid leukaemia (AML). The in-vitro biological test results were used together with the molecular structures of the various intermediates in a concise SAR analysis. Several of the intermediates revealed cytotoxicity (IC50<10−4 M), although the final natural product carbazomycin G did not reveal cytotoxicity versus the two said human cell lines.  相似文献   
64.
Ergothioneine has emerged as a crucial cytoprotectant in the pathogenic lifestyle of Mycobacterium tuberculosis. Production of this antioxidant from primary metabolites may be regulated by phosphorylation of Thr213 in the active site of the methyltransferase EgtD. The structure of mycobacterial EgtD suggests that this post-translational modification would require a large-scale change in conformation to make the active-site residue accessible to a protein kinase. In this report, we show that, under in vitro conditions, EgtD is not a substrate of protein kinase PknD.  相似文献   
65.
66.
Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon.  相似文献   
67.
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism – yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.  相似文献   
68.
We used N-methylpyrrole (Py)-N-methylimidazole-(Im) polyamide as an exogenous agent to modulate the formation of DNA assemblies at specific double-stranded sequences. The concept was demonstrated on the hybridization chain reaction that forms linear DNA. Through a series of melting curve analyses, we demonstrated that the binding of Py−Im polyamide positively influenced both the HCR initiation and elongation steps. In particular, Py−Im polyamide was found to drastically stabilize the DNA duplex such that its thermal stability approached that of an equivalent hairpin structure. Also, the polyamide served as an anchor between hairpin pairs in the HCR assembly, thus improving the originally weak interstrand stability. We hope that these proof-of-concept results can inspire future use of Py−Im polyamide as a molecular tool to modulate the formation of DNA assemblies.  相似文献   
69.
Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1H-detected 1H,15N and 3D 1H,13C,15N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.  相似文献   
70.
Carbohydrates and their conjugates play important roles in many biological processes including fertilization, differentiation, development, immune response, and infection. Their activities are largely dependent on the properties of terminal mono‐ or disaccharides. Galactose, mannose, fucose, glucose, sialic acid, etc., are commonly used as powerful scaffolds installed on drug molecules for targeting specific tissues including brain, liver, and cancers, and as epitopes for enhancing the targeting of various vaccines. This review focuses on the influence of their structural variations, including changes in sugar type, substituent groups and their positions, as well as length of linker portion, on the targeting of drugs or their efficacy. Particular attention is paid to the targeting properties of mono‐ and disaccharides applied in drug design and discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号