首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   4篇
工业技术   94篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1985年   1篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有94条查询结果,搜索用时 14 毫秒
91.
Lavigne C  Durand G  Roblin A 《Applied optics》2006,45(36):9140-9150
Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.  相似文献   
92.
We present a large/small-signal, non-quasi-static, charge conserving, SOI MOSFET modeling technique suitable for DC and high frequency circuit design. The device model is extracted from small signal microwave iso-thermal Y-parameter data and DC I–V characteristics. Low frequency dispersions associated with self-heating and floating body effects are verified to not limit the performance of this technique since it relies on both DC and transient I–V characteristics. The technique is applied to the modeling of a short-channel, partially depleted, SOI nMOSFET simulated on PISCES. The model generated is incorporated into a circuit simulator, which is used to perform large-signal transient and harmonic balance simulations. The transient I–V and gate charge extracted from the iso-thermal small-signal microwave Y-parameters, are in excellent agreement with the iso-thermal transient I–V and gate charge obtained from PISCES, respectively. The model topology is extended with a parasitic bipolar sub-circuit which automatically calculates the DC operating point for self-biasing circuits. Transient and non-linear power characterization results predicted with this model agree well with those obtained from PISCES for a wide range of input power drives. A complete electro-thermal model is proposed and verified to be able to predict temperature and transient I–V response.  相似文献   
93.
Hydropeaking hydropower plants are the main source of renewable energy, meeting sub-daily peaks in electricity demand. They induce rapid artificial flow variations, highly variable velocities, drift, and stranding risks for aquatic organisms. In hydropeaking reaches, microhabitat selection likely depends on both present and past hydraulics (flow velocity and water depth); this study aims to assess their relative impact. For this purpose, we used observations of fish abundance in 1,180 microhabitats (507 sampled by electrofishing, 673 by snorkeling) and of invertebrate abundance in 36 microhabitats (hyporheic and benthic) in a medium-sized hydropeaking river. We described past hydraulics of microhabitats over the 15 days preceding sampling, using a 2D hydrodynamic model, by identifying microhabitats dewatering (drying during >10 hr) or with high-velocity conditions (>1.3 m s−1 during >10 hr). Invertebrates guilds (defined based on their selection of present hydraulics in rivers without hydropeaking) responded significantly to past hydraulics, with abundances 3.5–15.3 times lower in dewatering habitats. Selection for present hydraulics by invertebrates was different from that observed in rivers without hydropeaking. For more mobile fish, responses were weaker and different, with a “bank” guild selecting dewatering microhabitats and, secondarily, a “midstream” guild avoiding them. Selection of present hydraulics by fish was similar to that observed in rivers without hydropeaking. Overall, past hydraulics influenced microhabitat selection, with stronger effects on invertebrates and stronger effects of dewatering than of high past velocities. However, high past velocities force fish to move and invertebrates to experience a large range of velocity.  相似文献   
94.
Alteration in the river flow regime due to intermittent hydropower production (i.e., hydropeaking) leads to biodiversity loss and ecosystem degradation worldwide. Due to the increasing shear of volatile green energy (i.e., wind and solar), hydropeaking frequency is deemed to increase in the coming decades. However, our mechanistic understanding of how the frequency of repeated hydropeaking (i.e., series of multiple events) affects ecological processes is still limited. Here, we reflect on the impacts of altered flow frequency and relative duration on the persistency of aquatic habitats. We focus on the habitats at patch-scale, being this the scale representing what organisms perceive when interacting with their environment. With a showcase we explore a temporally explicit approach to quantify altered habitat dynamics at patch-scale due to hydropeaking. We then review how changes in habitat dynamics and persistency may affect ecological processes. Our findings suggest that (i) a time-series approach allows to account for the inherent multi-event nature of hydropeaking; (ii) hydropeaking can increase the dynamics of single habitat patches by at least one order of magnitude if compared to unregulated rivers; (iii) altered habitat dynamics at the patch scale can affect the survival of more sessile species and life cycle stages (e.g., invertebrates) or the energy budget of mobile species and life cycle stages (e.g., adult fish). However, the ecological significance and potential environmental thresholds of patch-scale dynamics and persistency are still poorly investigated and need further attention. Moreover, methods for the aggregation of habitat dynamics and persistency from the patch to the reach-scale are not available yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号