首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  国内免费   14篇
环境安全   34篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2002年   1篇
排序方式: 共有34条查询结果,搜索用时 140 毫秒
31.
为探讨常州冬季大气气溶胶中类腐殖质(HULIS)的昼夜变化特征,在常州市城郊于2017年1月1日~2月28日采集了64个细颗粒物(PM_(2.5))样品,分析获取了类腐殖碳(HULIS-C)的浓度和光学变化特征.冬季PM_(2.5)昼夜平均质量浓度分别为122. 60μg·m~(-3)和111. 72μg·m~(-3),HULIS-C的昼夜平均质量浓度分别为4. 18μg·m~(-3)和3. 74μg·m~(-3),白天均高于夜晚.紫外光谱分析结果表明,HULIS/WSOA(水溶性有机质)于250 nm处的吸光度比值(昼:77%,夜:75%)明显大于HULIS-C/WSOC(水溶性碳)的浓度比值(昼:51%,夜:50%),表明较多的高紫外吸收物质和多聚共轭芳香结构存在于HULIS中;昼夜HULIS在250 nm和365 nm光下的吸光度比值(E250/E365)和特征紫外吸光度(SUVA280)的差异小,说明HULIS在芳香度和分子量上昼夜差异小,且昼夜HULIS化学性质及组成相近;进一步分析了HULIS的光吸收效率(MAE365)和光吸收指数(AAE300-400),发现昼夜没有明显差异.此外,通过HULIS-C和PM_(2.5)中其他化学组分的相关性分析,定性了解常州市冬季HULIS的主要影响因素,HULIS-C来源上受到了生物质燃烧、化石燃料燃烧、工厂排放以及二次生成的共同影响;而昼夜之间对比表明,昼间HULIS主要受到二次生成的影响,而夜间HULIS来源上除受到白天二次生成影响外,也受到了一次燃烧排放的影响.  相似文献   
32.
本文采用模拟太阳光对比研究了HONO和H2O2体系冰相中壬基酚的降解.考察了模拟太阳光作用下冰相中壬基酚的光转化规律,讨论了壬基酚初始浓度、pH、光照时间对壬基酚去除率的影响.结果表明,初始浓度降低、光照时间延长、pH值升高,壬基酚直接光解时的去除率升高.初始浓度为0.025 mmol·L-1的壬基酚在冰相中直接光解12 h,去除率达36.7%.外加H2O2时,冰相中壬基酚光解受到一定的抑制,且H2O2剂量增加,壬基酚去除率下降.而HONO吸收UV解离出的·OH自由基,促进了冰相中壬基酚的光转化.  相似文献   
33.
常州市大气PM2.5中PAHs污染特征及来源解析   总被引:3,自引:2,他引:1  
2016年1~8月期间,在常州市采集到55个大气细颗粒物PM_(2.5)样品,采用气相色谱-质谱联用仪测定其中17种PAHs的含量.结果表明,冬、春、夏季PAHs的季均浓度分别为140.24、41.42和2.96 ng·m~(-3),冬季污染较严重,且以4~6环中高分子量化合物为主.Ba P日均浓度平均值3.64 ng·m~(-3),超标日占总采样天数的41%.PAHs浓度与气温(相关系数-0.643)和能见度(相关系数-0.466)显著负相关,与大气压呈显著正相关(相关系数0.544),而与风速、相对湿度相关性较差.受昼夜温差、大气层结和污染源变化等因素影响,夜间PAHs浓度高于白天.气团后向轨迹模型分析表明,常州PM_(2.5)中PAHs主要受当地排放源和短距离传输的影响,长距离传输影响小(仅占11%).特征比值法分析发现,PAHs主要来源于燃煤、机动车尾气和生物质燃烧.利用超额终生致癌风险(ILCR)模型评估PAHs通过呼吸暴露途径对人体健康的影响,结果表明:成人的ILCR值高于儿童,冬季和春季人群的ILCR值略高于风险阈值,夏季则不明显.  相似文献   
34.
许多实验研究都关注大气凝聚相中单一有机化合物的液相光化学,对于实际大气液相环境中溶解性有机质(DOM)的液相光化学氧化的研究还很少.为此,本文报道了模拟太阳光和紫外光辐照下,大气气溶胶水相萃取的DOM直接或·OH氧化的实验结果.不同光解阶段的产物的吸光、氧化特性采用UV-vis和黑炭气溶胶质谱仪(SP-AMS)分析.结果表明,紫外光体系中DOM得到不断降解,相应的产物f44值远低于太阳光体系;液相光解时会生成多种羧酸,草酸的生成量最高.太阳光照反应条件下吸光度和HULIS浓度变化不大;而UV和UV+·OH条件下,HULIS浓度随反应时间不断增加,UV+·OH中反应23 h时HULIS浓度约为初始的4倍,说明含羧基、羟基和芳香基等官能团的棕色碳的形成.综合研究结果表明,太阳光作用下实际DOM液相氧化时吸光性和棕色碳的形成速率不是很快,而紫外光作用下大部分DOM不断分解为HULIS或小分子物质,剩余的有机物的吸光性可能比较强,导致最终产物的单位质量吸收效率(MAE)比较高.本文首次探讨了实际膜液相氧化过程,结果对厘清大气复合污染的形成机制提供重要依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号