首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24874篇
  免费   184篇
  国内免费   928篇
地球科学   25986篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   13篇
  2019年   8篇
  2018年   4768篇
  2017年   4049篇
  2016年   2613篇
  2015年   272篇
  2014年   116篇
  2013年   61篇
  2012年   1016篇
  2011年   2769篇
  2010年   2049篇
  2009年   2334篇
  2008年   1910篇
  2007年   2377篇
  2006年   77篇
  2005年   214篇
  2004年   414篇
  2003年   427篇
  2002年   258篇
  2001年   55篇
  2000年   56篇
  1999年   21篇
  1998年   23篇
  1997年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   22篇
  1980年   19篇
  1976年   6篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Contamination with heavy metals in surface and groundwater is a threat to human health and ecosystems. Due to this, the need arises to remediate water polluted through ecological and profitable technologies, such as phytoremediation. The objective of the work was to evaluate the concentration of lead (Pb) and zinc (Zn) in the floating macrophytes Limnobium laevigatum and Ludwigia peploides, after being exposed to contaminated water experimentally. In this way to be able to determine if these plants have mechanisms that allow them to accumulate the metals in the roots and to perform the translocation of these to different vegetative organs, L. laevigatum and L. peploides were placed in solutions contaminated with Pb ([Pb]?=?5 mg/l) and Zn ([Zn]?=?20 mg/l). The concentrations of metals in water, root and leaf samples were evaluated as a function of time (0, 1, 2 and 4 days). The determination of the metals was performed by the atomic absorption spectrophotometry technique. After 4 days of exposure to Pb and Zn, the plants showed high metal removal efficiencies of water, more to 70% in all cases. Pb was accumulated fundamentally by roots, while Zn was accumulated more in the leaves. In addition, the bioconcentration and translocation factors for each metal were calculated.  相似文献   
992.
The groundwater (GW) makes an important part of a region runoff. GW bodies playing the role of accumulating reservoirs regulate the GW discharge enabling the river flow to have more uniform long-term distribution. Along with other important advantages, the GW offers the users stable water abstraction rate independent from the recharge rate. The GW recharge quantification belongs to the uneasy tasks in the water resource management. Applying the conventional methods needs multiyear observation records of the variation of the groundwater body (GWB) characteristics. The employment of hydrology models avoids that necessity but requires great amount of data related to the soil hydraulic properties, the land topography and cover of the GWB watershed and long-term records of the climatic effects. The paper presents an introduction of the mathematical model CLM3 into the GW recharge estimation problem. It is a complex and advanced model with adequate interpretation of the water-related processes in the soil and on the land surface under atmospheric effects. The input is available from NCEP/NCAR reanalysis atmosphere data and the International Geosphere-Biosphere Program (IGBP) data base. The model is applied to GW recharge assessment of the Bulgarian Danube district for the year 2013. The obtained monthly and yearly total district values and the areal distribution of the infiltration intensity are matched to the existing field observation-based estimates. The study shows that the CLM3 model approach leads to encouraging results. The method comes very useful with GWB lacking regime observation data as well as for GW recharge prognostic assessments under climatic scenarios.  相似文献   
993.
Accumulation of heavy metals in soil media is considered as a serious environmental problem, which is hazardous to human and animal health. There have been several methods for the removal of these toxic metals. One of the commonly used methods is the use of plants, especially ornamental plants to remove heavy metals from soils. In this regard, the study has been conducted on the soils contaminated with Mn, Pb, Ni, and Cd using factorial experiment in a completely randomized design with two factors including three types of soil (soil A for the highest level of contamination, B for the lowest level of pollution, and C for the non-contaminated soil) with different contamination levels as well as three types of ornamental plants, gladiolus, daffodils, and narcissus with four replications. In another part of the study, soil A and gladiolus were used in a completely randomized design with three replications, and also three types of fertilizers, such as municipal solid waste compost, triple superphosphate and diammonium phosphate, were added to this soil. In addition, the availability of heavy metal was studied in gladiolus as influenced by the application of organic and chemical fertilizers. The results showed that heavy metal pollution caused reduction in the dry weight of gladiolus and tulips compared to the control sample, while there was no significant effect of pollution on the dry weight of narcissus. The uptake of Mn, Pb, Ni, and Cd by all three plants has been increased with enhancing the pollution levels of heavy metals. The highest concentration of Pb in the shoots of plants was observed in soil A with an average amount of 61.16 (mg kg?1), which revealed a substantial difference relative to the treatment of soil B and C. The most and least amount of Ni in the plants shoots were related to soil A and soil C with an average of 2.35 and 0.89 mg kg?1, respectively. The uptake of Pb by shoots of all three plants was nearly similar to each other, while more Pb was absorbed by the bulbs of gladiolus compared to the bulbs of other plants. Increment in the pollution levels led to the decrement in enrichment factor (EF); however, there was no effect of pollution levels on EF of Mn and Pb. Moreover, there was no effect of increasing pollution levels on translocation factor of these elements. In gladiolus, after application of organic and chemical fertilizers, it was observed that the concentration of heavy metals was far more in the bulbs compared to the shoots. In conclusion, the cultivation of these ornamental plants is highly recommended due to not only their decorative aspect but also their ability for bioremediation as well as being economical.  相似文献   
994.
Amending landslides inventories is immensely important to policy and decision makers alike. Sliding creates geometric shapes on the Earth’s surface. This study presents the utilization of LiDAR high-resolution digital elevation model (DEM) in the Alborz Mountains, Iran to refurbish the existing landslide inventory dataset by implementing the proposed algorithm. The method consists of the automated derivation of landslide geometry (length, width, and area) followed by classification of landslide types considering length, width and flow direction. This study has used the trapezoidal rule for numerical integration to develop the proposed algorithm. The landslides were then classified into four types (very long, long, very wide, and wide) based on slope, length, and width. This geometric classification of landslides is based on the geographical coordinates, slope angle (θ), length (L), and width (W), and further failure flow direction. A total of 95 landslides were updated from the existing inventory database. The proposed method was verified and evaluated by field observations; and 14 samples were tested to determine the relative error. The results demonstrated that the mean percentage relative error is 0.496% in length and width and 0.008% in area, related to the GIS analysis. The accuracy performance of determining the landslide’s type is 92%. The purposefulness of this algorithm is to increase the accuracy performance of landslides geometry analysis and automated measurements associated with the usual GIS platforms such as ArcGIS.  相似文献   
995.
CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.  相似文献   
996.
Based on γ-radiation dose rate and radon concentration measurements and 238U, 232Th, 226Ra, and 40K radionuclide testing, this study identifies the radioactive anomalies of stone coal-bearing strata in East China and evaluates the natural radioactivity levels in the air, solid, water and plant media in the typical area of the regional stone coal-bearing layers. The stone coal-bearing strata in East China occur in the lower Cambrian system along the margin of the Yangtze block; additionally, the radioactive anomaly area is sporadically distributed in the stone coal-bearing layers. The background values of 238U, 232Th, 226Ra, and 40K are higher in the stone coal-bearing areas, and the spatial distribution of these natural radionuclides shows significant variability. 238U and 226Ra clearly accumulate in the coal, coal gangue and soil and are the main sources of the environmental radiation in coal mines. The γ-radiation shows a higher background value in the stone coal-bearing area, and this radioactive pollution cannot be ignored. Typically, the effective dose of γ-radiation exceeds the limit value of 5 mSv/a, and the total α and total β concentrations of the groundwater are 10–30 times the limit value at some points. The residents near the mining area are subjected to a higher radiation dose, and the groundwater, building materials, and plants have been contaminated by the radioactive pollution sporadically through time. It is necessary to strengthen the monitoring work of radioactive environments and to take appropriate control measures.  相似文献   
997.
The CO2 migrated from deeper to shallower layers may change its phase state from supercritical state to gaseous state (called phase transition). This phase transition makes both viscosity and density of CO2 experience a sharp variation, which may induce the CO2 further penetration into shallow layers. This is a critical and dangerous situation for the security of CO2 geological storage. However, the assessment of caprock sealing efficiency with a fully coupled multi-physical model is still missing on this phase transition effect. This study extends our previous fully coupled multi-physical model to include this phase transition effect. The dramatic changes of CO2 viscosity and density are incorporated into the model. The impacts of temperature and pressure on caprock sealing efficiency (expressed by CO2 penetration depth) are then numerically investigated for a caprock layer at the depth of 800 m. The changes of CO2 physical properties with gas partial pressure and formation temperature in the phase transition zone are explored. It is observed that phase transition revises the linear relationship of CO2 penetration depth and time square root as well as penetration depth. The real physical properties of CO2 in the phase transition zone are critical to the safety of CO2 sequestration. Pressure and temperature have different impact mechanisms on the security of CO2 geological storage.  相似文献   
998.
999.
1000.
The present study focuses on the Balason river running through the Himalayan piedmont zone (near Siliguri, India). The objective of the study is an assessment of the environmental effects of river bed material extraction by humans and the dependence of indigenous people on the river and its ecosystem services. The analysis is based on results of field work consisting of geodetic measurements of the river channel and interviews among the local community from the Nimtijot village. Historical hydrological data were also used for the study. The results of the investigation show that the Balason river is heavily affected by excessive exploitation of river bed material during dry season and the replenishment of extracted material in a monsoon season is not always sufficient. It leads to channel deepening. The local community working in the river heavily depends for its livelihood on continuing this activity. A decreasing amount of bed material to be extracted may lead to degradation of the strong relationship between the local community and their natural environment (river).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号