首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   27篇
  国内免费   3篇
地球科学   641篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   17篇
  2016年   28篇
  2015年   22篇
  2014年   25篇
  2013年   50篇
  2012年   37篇
  2011年   21篇
  2010年   24篇
  2009年   39篇
  2008年   24篇
  2007年   30篇
  2006年   22篇
  2005年   32篇
  2004年   23篇
  2003年   19篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   11篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有641条查询结果,搜索用时 937 毫秒
101.
Numerous large landslide deposits occur in the Tien Shan, a tectonically active intraplate orogen in Central Asia. Yet their significance in Quaternary landscape evolution and natural hazard assessment remains unresolved due to the lack of "absolute" age constraints. Here we present the first 10Be exposure ages for three prominent (> 107 m3) bedrock landslides that blocked major rivers and formed lakes, two of which subsequently breached, in the northern Kyrgyz Tien Shan. Three 10Be ages reveal that one landslide in the Alamyedin River occurred at 11–15 ka, which is consistent with two 14C ages of gastropod shells from reworked loess capping the landslide. One large landslide in Aksu River is among the oldest documented in semi-arid continental interiors, with a 10Be age of 63–67 ka. The Ukok River landslide deposit(s) yielded variable 10Be ages, which may result from multiple landslides, and inheritance of 10Be. Two 10Be ages of 8.2 and 5.9 ka suggest that one major landslide occurred in the early to mid-Holocene, followed by at least one other event between 1.5 and 0.4 ka. Judging from the regional glacial chronology, all three landslides have occurred between major regional glacial advances. Whereas Alamyedin and Ukok can be considered as postglacial in this context, Aksu is of interglacial age. None of the landslide deposits show traces of glacial erosion, hence their locations and 10Be ages mark maximum extents and minimum ages of glacial advances, respectively. Using toe-to-headwall altitude ratios of 0.4–0.5, we reconstruct minimum equilibrium-line altitudes that exceed previous estimates by as much as 400 m along the moister northern fringe of the Tien Shan. Our data show that deposits from large landslides can provide valuable spatio-temporal constraints for glacial advances in landscapes where moraines and glacial deposits have low preservation potential.  相似文献   
102.
Mass wasting at continental margins on a global scale during the Middle Ordovician has recently been related to high meteorite influx. Although a high meteorite influx during the Ordovician should not be neglected, we challenge the idea that mass wasting was mainly produced by meteorite impacts over a period of almost 10 Ma. Having strong arguments against the impact-related hypothesis, we propose an alternative explanation, which is based on a re-evaluation of the mass wasting sites, considering their plate-tectonic distribution and the global sea level curve. A striking and important feature is the distribution of most of the mass wasting sites along continental margins characterised by periods of magmatism, terrane accretion and continental or back-arc rifting, respectively, related to subduction of oceanic lithosphere. Such processes are commonly connected with seismic activity causing earthquakes, which can cause downslope movement of sediment and rock. Considering all that, it seems more likely that most of this mass wasting was triggered by earthquakes related to plate-tectonic processes, which caused destabilisation of continental margins resulting in megabreccias and debris flows. Moreover, the period of mass wasting coincides with sea level drops during global sea level lowstand. In some cases, sea level drops can release pore-water overpressure reducing sediment strength and hence promoting instability of sediment at continental margins. Reduced pore-water overpressure can also destabilise gas hydrate-bearing sediment, causing slope failure, and thus resulting in submarine mass wasting. Overall, the global mass wasting during the Middle Ordovician does not need meteoritic trigger.  相似文献   
103.
104.
Hydrothermal simulations are used to provide insight into the subsurface thermal regime of the Perth metropolitan area (PMA) in Western Australia. High average permeabilities and estimated fluid flow rates in shallow aquifers of the PMA suggest that advection and convection may occur in these aquifers. These processes are simulated, using a new geological model of the PMA to constrain the geometry of aquifers, aquitards and faults. The results show that advection has a strong influence on subsurface temperature, especially in the north of the PMA, where aquifer recharge creates an area of anomalously low temperature. Convection may be important, depending on the permeability of the Yarragadee Aquifer. If convection occurs, it creates thermal highs and lows with a spacing of approximately 5 km. Some of these thermal anomalies migrate over geological time due to coupling between advection and convection, but they are stationary on human timescales. Fault permeability influences the pattern of convection. Advection and convection cause variations in the geothermal gradient which cannot be predicted by conductive models; therefore, these processes should be considered in any model that is used for assessment of geothermal resources in the PMA.  相似文献   
105.
Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 × 108. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol s− 1 in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol s− 1. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23 yr− 1, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2 s− 1. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.  相似文献   
106.
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.  相似文献   
107.
108.
We use the PSC z IRAS galaxy redshift survey to analyse the cosmological galaxy dipole out to a distance of 300  h 1 Mpc. The masked area is filled in three different ways, first by sampling the whole sky at random, secondly by using neighbouring areas to fill a masked region, and thirdly using a spherical harmonic analysis. The method of treatment of the mask is found to have a significant effect on the final calculated dipole.
The conversion from redshift space to real space is accomplished by using an analytical model of the cluster and void distribution, based on 88 nearby groups, 854 clusters and 163 voids, with some of the clusters and all of the voids found from the PSC z data base.
The dipole for the whole PSC z sample appears to have converged within a distance of 200  h 1 Mpc and yields a value for , consistent with earlier determinations from IRAS samples by a variety of methods. For b =1, the 2 range for 0 is 0.431.02.
The direction of the dipole is within 13° of the cosmic microwave background (CMB) dipole, the main uncertainty in direction being associated with the masked area behind the Galactic plane. The improbability of further major contributions to the dipole amplitude coming from volumes larger than those surveyed here means that the question of the origin of the CMB dipole is essentially resolved.  相似文献   
109.
110.
The purpose of GPS-satellite-to-satellite tracking (GPS-SST) is to determine the gravitational potential at the earth's surface from measured ranges (geometrical distances) between a low-flying satellite and the high-flying satellites of the Global Positioning System (GPS). In this paper, GPS-satellite-to-satellite tracking is reformulated as the problem of determining the gravitational potential of the earth from given gradients at satellite altitude. The uniqueness and stability of the solution are investigated. The essential tool is to split the gradient field into a normal part (i.e. the first-order radial derivative) and a tangential part (i.e. the surface gradient). Uniqueness is proved for polar, circular orbits corresponding to both types of data (first radial derivative and/or surface gradient). In both cases gravity recovery based on satellite-to-satellite tracking turns out to be an exponentially ill-posed problem. Regularization in terms of spherical wavelets is proposed as an appropriate solution method, based on the knowledge of the singular system. Finally, the extension of this method is generalized to a nonspherical earth and a non-spherical orbital surface, based on combined terrestrial and satellite data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号