首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   18篇
  国内免费   3篇
地球科学   254篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   13篇
  2018年   6篇
  2017年   3篇
  2016年   14篇
  2015年   19篇
  2014年   11篇
  2013年   12篇
  2012年   10篇
  2011年   13篇
  2010年   18篇
  2009年   18篇
  2008年   18篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有254条查询结果,搜索用时 93 毫秒
11.
The potential of radar imagery in geological exploration was investigated at a study site in Mauritania (Akjoujt region). Compared with optical images, the results obtained show how radar imagery can help not only in detecting surface geological structures such as dykes and veins, but also mapping subsurface structures beneath a shallow layer of sand (palaeochannels). The mapping potential was found to be much better at long wavelengths than at short ones (L-band, compared with C- and X-band). As for optical images, their contribution is much more limited in the mapping of surface geological structures, and inappropriate for detecting subsurface structures. We conclude that spatial remote sensing enables the improvement of existing geological maps and the optimization of cartographic surveying. To cite this article: N. Baghdadi et al., C. R. Geoscience 337 (2005).  相似文献   
12.
Melting experiments of calcite were performed on the join CaCO3‐H2O at a pressure of 1000 bars. The system evolves to the ternary CaO‐H2O‐CO2 system during melting experiments. Our experiments show that partial melting of calcite begins at a low temperature, below 650 °C. Such a low partial melting temperature for carbonates revives the debate about the presence of carbonate melts in the upper crust. More specifically, the conditions for carbonate partial melting are present in carbonate host rocks undergoing contact metamorphism at high temperatures in the presence of water‐rich fluid. The presence of carbonate melts influences physical parameters such as viscosity and permeability in contact aureoles, and, furthermore, decarbonation reactions release massive amounts of CO2.  相似文献   
13.
Using results from coupled climate model simulations of the 8.2 ka climate event that produced a cold period over Greenland in agreement with the reconstructed cooling from ice cores, we investigate the typical pattern of climate anomalies (fingerprint) to provide a framework for the interpretation of global proxy data for the 8.2 ka climate event. For this purpose we developed an analysis method that isolates the forced temperature response and provides information on spatial variations in magnitude, timing and duration that characterise the detectable climate event in proxy archives. Our analysis shows that delays in the temperature response to the freshwater forcing are present, mostly in the order of decades (30 a over central Greenland). The North Atlantic Ocean initially cools in response to the freshwater perturbation, followed in certain parts by a warm response. This delay, occurring more than 200 a after the freshwater pulse, hints at an overshoot in the recovery from the freshwater perturbation. The South Atlantic and the Southern Ocean show a warm response reflecting the bipolar seesaw effect. The duration of the simulated event varies for different areas, and the highest probability of recording the event in proxy archives is in the North Atlantic Ocean area north of 40° N. Our results may facilitate the interpretation of proxy archives recording the 8.2 ka event, as they show that timing and duration cannot be assumed to correspond with the timing and duration of the event as recorded in Greenland ice cores. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
14.
Since the discovery of shatter cones (SCs) near the village of Agoudal (Morocco, Central High Atlas Mountains) in 2013, the absence of one or several associated circular structures led to speculation about the age of the impact event, the number, and the size of the impact crater or craters. Additional constraints on the crater size, age, and erosion rates are obtained here from geological, structural, and geophysical mapping and from cosmogenic nuclide data. Our geological maps of the Agoudal impact site at the scales of 1:30,000 (6 km2) and 1:15,000 (2.25 km2) include all known occurrences of SCs in target rocks, breccias, and vertical to overturned strata. Considering that strata surrounding the impact site are subhorizontal, we argue that disturbed strata are related to the impact event. Three types of breccias have been observed. Two of them (br1‐2 and br2) could be produced by erosion–sedimentation–consolidation processes, with no evidence for impact breccias, while breccia (br1) might be impact related. The most probable center of the structure is estimated at 31°59′13.73?N, 5°30′55.14?W using the concentric deviation method applied to the orientation of strata over the disturbed area. Despite the absence of a morphological expression, the ground magnetic and electromagnetic surveys reveal anomalies spatially associated with disturbed strata and SC occurrences. The geophysical data, the structural observations, and the area of occurrence of SCs in target rocks are all consistent with an original size of 1.4–4.2 km in diameter. Cosmogenic nuclide data (36Cl) constrain the local erosion rates between 220 ± 22 m Ma?1 and 430 ± 43 m Ma?1. These erosion rates may remove the topographic expression of such a crater and its ejecta in a time period of about 0.3–1.9 Ma. This age is older than the Agoudal iron meteorite age (105 ± 40 kyr). This new age constraint excludes the possibility of a genetic relationship between the Agoudal iron meteorite fall and the formation of the Agoudal impact site. A chronolgy chart including the Atlas orogeny, the alternation of sedimentation and erosion periods, and the meteoritic impacts is presented based on all obtained and combined data.  相似文献   
15.
This paper focuses on pollen, spores, non‐pollen palynomorphs (NPPs) and certain geochemical elements from the ombrotrophic blanket bog of Zalama (Basque‐Cantabrian Mountains, northern Iberian Peninsula), with the support of a robust chronology based on 17 AMS 14C dates. The main results related to the last 8000 years show that, during the early middle Holocene, pines and deciduous forests were the most extensive tree formations. At the beginning of the succession, pines reach 44%, showing regional presence, whereas after 7600 cal. a BP, deciduous forests were particularly abundant. From c. 6500 cal. a BP the pollen diagram constructed from our samples shows the first anthropogenic evidence, linked with the new economic practices related to the Neolithic of the Basque‐Cantabrian Mountains. From 3300 cal. a BP the expansion of Fagus sylvatica is particularly clear, and has since then become one of the dominant forest species in this region. We also discuss the Holocene evolution of other noteworthy plant communities in southwestern Europe, such as Taxus baccata, Juglans and shrublands.  相似文献   
16.
17.
18.
The late Messinian mixed carbonate‐siliciclastic platforms of the Sorbas Basin, known as the Terminal Carbonate Complex, record significant changes in carbonate production and geometry. Their facies and stratigraphic architecture result from complex interactions between base‐level fluctuations, evaporite deformation/dissolution and detrital inputs. A 3D quantitative approach (with DIONISOS software) is used to explore the basin‐scale platform architecture and to quantify the carbonate production of the Terminal Carbonate Complex. The modelling strategy consists in integrating detailed 2D field‐based transects and modern carbonate system parameters (e.g. carbonate production rates, bathymetric and hydrodynamic ranges of production). This approach limits user impact and so provides more objective output results. Tests are carried out on carbonate production rates, subsidence and evaporite deformation/dissolution. Numerical modelling provides accurate predictions of geometries, facies distributions and depositional sequence thicknesses, validated by field data. Comparative statistical testing of the field transects and of the various model outputs are used to discern the relative contribution of the parameters tested to the evolution of basin filling. The 3D visualization and quantification of the main carbonate producers (ooids and microbialites) are discussed in terms of changes in base‐level and detrital supply. This study demonstrates that base‐level fluctuations have the greatest impact on the carbonate budget. Evaporite deformation/dissolution affects the type and amount of carbonate production, inducing a transition from an ooid‐ to microbialite‐dominated system and also has a major effect on stratigraphic architecture by inducing the migration of depocentres. The numerical modelling results obtained using modern carbonate system parameters could also be applied to subsurface ooid‐microbialite reservoirs, and the Terminal Carbonate Complex is a good analogue for such systems.  相似文献   
19.
Despite the gently dipping slopes (ca 1°), large-scale submarine slope failures have occurred on the mid-Norwegian continental margin (Storegga, Sklinnadjupet, Traenadjupet), suggesting the presence of special conditions predisposing to failure in this formerly glaciated margin. With a volume estimated between 2,400 and 3,200 km3 and an affected area of approximately 95,000 km2, the Storegga slide represents one of the largest and best-studied submarine slides of Holocene age known worldwide. Finite element modeling of slope failure indicates that a large (6.5 < Ms < 7.0) seismic triggering mechanism would not be sufficient to cause failure at more than 110 m below the seabed as observed for the slip planes at Storegga (northern sidewall). This implies that other factors (e.g., liquefaction, strain softening, gas charging, rapid burial) are needed to explain the occurrence of the Storegga slide with a deep surface of failure. In this paper, we discuss the importance of the compaction effect of rapidly accumulated sediments in the slide area. During compaction, sediment grains reorganize themselves, thereby, expelling pore water. Consequently, depending on sedimentation rate and permeability, excess pore pressures might result beneath less permeable sediments. Our modeling and cross-checking illustrate how excess pore pressure generation due to high sedimentation rate could explain the development of layers of weakness, and thus, how such a large slide might have been initiated in deep sediments. Using the highest sedimentation rate estimated in the area (36 and 27 m/kyr between 16.2 and 15 kyr BP), 1D modeling shows excess pore pressure values of around 200 kPa at a depth of 100 m below the seafloor 15 kyr BP and 60 kPa at a depth of 100 m at the time of the slide (8 kyr BP). Excess pore pressure apparently drastically reduced the resistance of the sediment (incomplete consolidation). In addition, 2D modeling shows that permeability anisotropies can significantly affect the lateral extent of excess pore pressure dissipation, affecting, that way, normally consolidated sediments far from the excess pore pressure initiation area.  相似文献   
20.
Developments in performance‐based seismic design and assessment approaches have emphasized the importance of considering residual deformations. Recent investigations have also led to a proposed direct displacement‐based design (DDBD) approach which includes an explicit consideration of the expected residual deformations as an integral part of the design process. Having estimated the expected residual deformations in a structure, engineers are faced with the problem of reducing them to meet the targeted performance levels under pre‐defined seismic hazard levels. Previous studies have identified the post‐yield stiffness as a primary factor influencing the magnitude of residual deformations in single degree of freedom and multiple degree of freedom structures. In this paper, a series of simple approaches to increase the post‐yield stiffness of traditional framed and braced systems for the purpose of reducing residual deformations are investigated. These methods do not utilize recentring post‐tensioned technology. This contribution addresses the feasibility of altering the lateral post‐yield stiffness of structural systems by: (i) using different reinforcement materials with beneficial features in their stress–strain behaviour; (ii) re‐designing the section geometry and properties of primary seismic‐resisting elements; and (iii) introducing a secondary elastic frame to act in parallel with the primary system. The efficiency of each of these techniques is investigated through monotonic and cyclic moment‐curvature and non‐linear time‐history analyses. Of these approaches the design and introduction of an elastic secondary system was found to be most effective and consistent in reducing residual deformations. A simplified design approach for achieving the desired increase of a system's post‐yield stiffness is also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号