首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Neupert效应的定性描述是耀斑中脉冲分量(硬X射线、微波暴)与渐变分量(软X射线发射)之间存在的因果关系,即耀斑最初的能量是以加速粒子的形式释放,加速的电子在大气传输过程中产生非热硬X射线轫致辐射,并加热大气,耀斑软X射线发射是高能粒子注入大气的响应.根据经典Neupert效应的定量描述,硬X射线发射(表征非热电子注入)结束时软X射线应该立刻达到极大,但以往的观测发现一些耀斑软X射线峰值时间(t2)明显晚于硬X射线结束时间(t1)(τ=t2–t1,τ 0),热与非热辐射之间存在明显的偏离经典Neupert效应的情况.为了研究偏离经典Neupert效应的事件,在2002—2015年间的RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager)和GOES (Geostationary Operational Environmental Satellites)耀斑列表中,按照在25–50 keV范围内光变较简单、软X射线有对应发射峰等判据,共选择276个耀斑样本,统计了这些耀斑的τ分布、环长d (用双足点源之间的距离来表征)与τ的关系.结果显示:(1)有227个耀斑τ 0,即有约82%的耀斑偏离经典Neupert效应;(2)τ与d之间存在一定的线性相关,即环越长,软X射线极大的时间越延后;(3)似乎存在一个临界距离,当环长小于临界距离时,经典Neupert效应成立.这些结果印证了修正Neupert效应的必要性,并对其物理意义进行了讨论.  相似文献   

2.
Previous observations show that in many solar flares there is a causal correlation between the hard X-ray flux and the derivative of the soft X-ray flux. This so-called Neupert effect is indicative of a strong link between the primary energy release to accelerate particles and plasma heating. It suggests a flare model in which the hard X-rays are electron – ion bremsstrahlung produced by energetic electrons as they lose their energy in the lower corona and chromosphere and the soft X-rays are thermal bremsstrahlung from the “chromospheric evaporation” plasma heated by those same electrons. Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observes in a broad energy band and its high spectral resolution and coverage of the low-energy range allow us to separate the thermal continuum from the nonthermal component, which gives us an opportunity to investigate the Neupert effect. In this paper, we use the parameters derived from RHESSI observations to trace the primary energy release and the plasma response: The hard X-ray flux or spectral hardness is compared with the derivative of plasma thermal energy in three impulsive flares on 10 November 2002 and on 3 and 25 August 2005. High correlations show that the Neupert effect does hold for the two hard X-ray peaks of the 10 November 2002 flare, for the first peaks of the 3 August 2005 flare, and for the beginning period of the 25 August 2005 flare.  相似文献   

3.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

4.
The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10–100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated Hα flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30–44 keV range, but only one had flux at the 3σ level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.  相似文献   

5.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

6.
Lee  Chik-Yin  Wang  Haimin 《Solar physics》2000,195(1):149-164
We analysed the hard X-ray and microwave flux spectra of the solar flare (BATSE No. 1791) on 2 November 1991, which started at 16:11:03 UT and ended at 16:56:10 UT. This flare is particularly interesting because of its deep cyclic intensity modulation. Data are available simultaneously from the 16-channel BATSE/LAD hard X-ray and 45-frequency OVRO microwave database. We quantitatively compare the time variations in profiles of the hard X-ray spectral photon index, the 50 keV X-ray flux, and microwave spectral indices (at both high and low frequency ends). As expected, the X-ray photon spectral index decreases as the hard X-ray flux increases. This pattern appears in all the sub-peaks. This is consistent with previous observations that hard X-ray emission hardens at the emission peak. However, the behaviour of the high-frequency microwave index is unexpected. We observe an anti-correlation between the high-frequency microwave index and the hard X-ray photon index during the course of the flare. Finally, we study the arrival time of microwave flux peaks as a function of frequency and find that the microwave peak at a higher frequency comes earlier than that at a lower frequency. A maximum delay of 72 s is found among the main peaks at different frequencies. Shorter delays are found for the other five sub-peaks.  相似文献   

7.
To compare mm-wave and X-ray diagnostics of solar flare plasma, five flares observed in 1980–1991 in Metsähovi at 22 and 37 GHz and with GOES, SMM, and GRO are studied. The first impulsive peak of the mm-wave bursts under investigation coincides in time with hard X-ray emission. The second gradual component in mm-wave emission coincides with the maximum of the soft X-ray emission measure. The bremsstrahlung mm-wave radiation from hot chromospheric plasma and gyrosynchrotron radiation driven by common population of superthermal electrons are calculated. It is shown that for mm-wave events with the first peak intensity 100 s.f.u., the thermal bremsstrahlung is more important than the gyrosynchrotron emission. The total energy of fast electrons deduced from the first peak of mm-wave bursts is one to two orders of magnitude less than that determined from the hard X-ray emission in the approximation of a thick-target nonthermal model. That can testify in favour of the hybrid thermal/nonthermal model proposed by Holman and Benka (1992). The emission measure and the energy of evaporated plasma using both mm-wave and soft X-ray data are also determined. For events investigated here the energy of evaporated chromospheric plasma is larger than the total energy of fast electron beams. We have concluded that, for evaporation, additional energy release in the chromosphere is needed. The possibility of such energy release in the framework of an advanced circuit model for solar flares is discussed.  相似文献   

8.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands between March 1976 and October 1979. Measurements of EUV and soft X-ray emission from a large number of solar flares were obtained. Although solar flare measurements in the soft X-ray bands are continuously made and used as a standard of a flare's geophysical significance, direct measurements of flare EUV emission are quite rare. We present measurements of the X-ray and EUV emission from several flares with special emphasis on the relative EUV response associated with flares in different categories determined by 1 to 8 Å soft X-ray flux. An example of a flare exhibiting an impulsive (nonthermal) phase is included.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 Semptember 1980, Scheveningen, The Netherlands.  相似文献   

9.
McDonald  L.  Harra-Murnion  L.K.  Culhane  J.L. 《Solar physics》1999,185(2):323-350
We analyse four solar flares which have energetic hard X-ray emissions, but unusually low soft X-ray flux and GOES class (C1.0–C5.5). These are compared with two other flares that have soft and hard X-ray emission consistent with a generally observed correlation that shows increasing hard X-ray accompanied by increasing soft X-ray flux. We find that in the four small flares only a small percentage of the nonthermal electron beam energy is deposited in a location where the heating rate of the electron beam exceeds the radiative cooling rate of the ambient plasma. Most of the beam energy is subsequently radiated away into the cool chromosphere and so cannot power chromospheric evaporation thus reducing the soft X-ray emission. We also demonstrate that in the four small flares the nonthermal electron beam energy is insufficient to power the soft X-ray emitting plasma. We deduce that an additional energy source is required, and this could be provided by a DC-electric field (where quasi-static electric field channels in the coronal loops accelerate electrons, and those electrons with velocity below a critical velocity will heat the ambient plasma via Joule heating) in preference to a loop-top thermal source (where heat flux deposited in the corona is conducted along magnetic field lines to the chromosphere, heating the coronal plasma and giving rise to further chromospheric evaporation).  相似文献   

10.
The Neupert effect is the name given to the correlation observed in many flares between the time-integrated microwave and hard X-ray emissions and the soft X-ray emission light curve. We have used hard X-ray data from the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) and soft X-ray data from the detector on GOES to determine what fraction of all events show this correlation and how the correlation changes from the impulsive to the gradual phase. We have found that of 66 HXRBS events observed in 1980 with a peak rate of > 1000 counts s-1, 58 (80%) showed good correlations with peaks in the GOES time derivative plot corresponding to peaks in the hard X-ray (HXR) plots to within ±20 s. In 20 of these good-correlation cases (30%), the soft X-ray (SXR) time derivative stays high after the HXR emission has decreased suggesting that the later emissions result from energy release in a loop already affected by the initial energy release. In 8 of the 13 flares that showed poor correlation, the SXR time derivative shows no peak corresponding to the initial HXR impulsive peak that has structure on a time scale of 1 s. This suggests that in these events the initial impulsive energy release results primarily in electron acceleration, and that the secondary plasma heating from the accelerated electrons contributes relatively little compared to the more gradual plasma heating already taking place at the same time. The more gradually varying events, commonly referred to as type C flares, tend to show poorer correlation between the SXR time derivative and the HXR time profile. Of 26 GOES X1 or greater flares recorded between 1980 and 1989 with HXR peaks lasting over 10 rain, 13 (50%) showed poor correlation with the gradual HXR peaks either not registering at all in the SXR time derivative plots or showing up as very broad peaks. In one case, on 1981 April 26, the SXR time derivative peak was delayed by 13 rain. Only 17 (65%) of the 26 X-flares had an earlier, impulsive component and of those, 12 (71%) showed good correlation between the impulsive peaks.  相似文献   

11.
The X-ray spectrometer IRIS was designed to register the fluxes of quanta with energies ranging from 2 to 250 keV in various time-resolution modes: 0.01, 1.0, and 2.5 s in 4, 64, and 12 channels, respectively. Owing to the high instrument sensitivity, individual spikes of tens of milliseconds can be distinguished in the time structure of the X-ray flare emission. The time spectral analysis carried out for the X-ray emission of a number of registered flares points to the presence of a quasiperiodic structure with characteristic times of the same order. For the flares of December 19, 2001, and August 10, 2002, the process of energy release has been considered with a 1-s time resolution, and its periodic character has been revealed. For the flare of December 19, 2001, the energy spectra of the hard X-ray emission have been simulated by thermal and nonthermal models. It has been shown that the both models can describe this emission.  相似文献   

12.
The fluxes of extreme ultraviolet (EUV) and soft X-ray emission are key parameters for modelling the ionosphere and upper atmosphere. A new aspect is considered in using these fluxes for diagnostics and short-term prediction of proton radiation danger from the flare. The EUV (λ < 105 nm) and soft X-ray (0.1–0.8 nm) fluxes were compared for two types of solar flares. The first type is followed by a strong enhancement in solar energetic (E >10 MeV) proton flux, the second is not followed by any enhancement in proton flux. It was discovered that the flare UV flux was considerably higher for flares with protons than for those without protons. Soft X-ray fluxes were approximately equal in both cases. An excess of EUV emission in proton flares grows with increasing proton flux. An analytic expression was found for the growth in proton flux as a function of the excess of EUV radiation at a given X-ray flux. These results can be used in predicting flare radiation danger.  相似文献   

13.
Solar hard X-ray bursts   总被引:3,自引:0,他引:3  
Brian R. Dennis 《Solar physics》1985,100(1-2):465-490
The major results from SMM are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152–158 day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SMM data are presented for examples of type B and type C events. New results are presented showing coincident hard X-rays, O v, and UV continuum observations in type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.  相似文献   

14.
We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IXPS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20?C50 keV energy range during an M- or X-class flare, and will provide imaging information at the ??10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.  相似文献   

15.
The AVS-F apparatus onboard the CORONAS-F satellite (operated from July 31, 2001, to December 6, 2005) was intended for investigation of solar hard X-ray and gamma-ray radiation and for registration of gamma-ray bursts. The AVS-F apparatus constitutes a system for processing the data from two detectors: SONG-D (a CsI(Tl) scintillation detector 200 mm in diameter and 100 mm in height, fully surrounded by plastic anticoincidence shield) and RPS-1 (a solid state CdTe detector 4.9 mm × 4.9 mm in size). Over 60 solar flares stronger than M1.0 class by GOES classification were registered during the period from August 2001 to February 2005. Most flares showed gamma-ray emission during the periods when a rise in the X-ray flux was observed by the GOES instruments. Some flares produced gamma-rays only at maximum X-ray emission; for some flares, the durations of gamma-ray and X-ray emissions were the same. Up to six complexes of spectral lines were detected in some solar flares. The AVS-F instrument analyzes temporal profiles of low-energy gamma-ray emission with a temporal resolution of 1 ms within the first 4.096 seconds of solar flares. The preliminary analysis of such temporal profiles for seven solar flares revealed time regularities with scales from 7 to 35 ms in the 0.1-to 20-MeV energy range only for the flare of January 20, 2005, at a confidence level of 99%.  相似文献   

16.
We briefly discuss the observed features including the high flux density, short duration, narrow emission band, fast frequency drift, quasi-periodic oscillation and fast variation of polarized components, of 51 spike emission events observed at 2545/2645 MHz in the solar activity peak year, 1991 January–December, and carry out correlation analysis between these events and optical flares, magnetic field intensity and configuration of flare regions, and sunspot evolution types of active regions. In view of the fact that the observed and statistical characteristics of the spike emissions are very different from those of known types of solar radio burst and known solar radio components, we think that the spike emission in the peak years is probably a new type of radio burst excited by electron cyclotron maser instability under wave-particle resonance, or a new solar radio component.  相似文献   

17.
Frequency distributions and correlations of solar X-ray flare parameters   总被引:3,自引:0,他引:3  
We have determined frequency distributions of flare parameters from over 12000 solar flares recorded with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) satellite. These parameters include the flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons (the latter two computed assuming a thick-target flare model). The energies were computed above a threshold energy between 25 and 50 keV. All of the distributions can be represented by power laws above the HXRBS sensitivity threshold. Correlations among these parameters are determined from linear regression fits as well as from the slopes of the frequency distributions. Variations of the frequency distributions were investigated with respect to the solar activity cycle.Theoretical models for the frequency distribution of flare parameters depend on the probability of flaring and the temporal evolution of the flare energy build-up. Our results are consistent with stochastic flaring and exponential energy build-up, with an average build-up time constant that is 0.5 times the mean time between flares. The measured distributions of flares are also consistent with predicted distributions of flares from computer simulations of avalanche models that are governed by the principle of self-organized criticality.  相似文献   

18.
The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality(SOC).In this paper,we first show that,so long as the shape of the normalized light curve is not correlated with the peak flux,the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the powerlaw frequency distribution of the peak flux,which may partially explain why power-law distributions are ubiquitous in the Universe.We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different:the higher energy channel has a harder distribution than the lower energy channel,which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites.The temperature(T) distribution,on the other hand,approaches a power-law distribution with an index of 2 for high values of T.Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.  相似文献   

19.
Statistical studies of hard X-ray flares position on the solar disk have shown that the more energetic hard X-rays have a tendency to be more concentrated near the limb rather than at disk center, whereas lower-energy hard X-ray emission seems isotropic. Since the high-frequency radio emission is believed to be produced by the same energetic electron population responsible for the high-energy hard X-rays, we searched the microwave/millimeter emitting bursts for center-to-limb variation in their emission. A total of 499 bursts observed by the radio telescopes in Bern at the frequencies of 3.1, 5.2, 8.4, 11.8, 19.6, 35.0, and 50.0 GHz were analyzed. Simultaneous Hα flares were used for determination of the radio burst position on the solar disk. For each of the 7 frequencies, the peak flux and duration were studied as a function of heliocentric position. For 312 bursts, spectral parameters such as spectral index, peak frequency, and flux at spectral maximum were analyzed. For a subset of 43 bursts with emission at all frequencies, the emission and spectral parameters were analyzed. Center-to-limb variations of the spectral parameters for all bursts were sought. In order to interpret the observational results, we have performed a numerical simulation of gyrosynchrotron spectra. We find that high-frequency events, which are also the more energetic ones, have larger center-to-limb variations in their parameters than do the overall flares. Moreover, this behavior agrees with theoretical predictions.  相似文献   

20.
Using RHESSI and some auxiliary observations we examine possible connections between the spatial and temporal structure of nonthermal hard X-ray (HXR) emission sources from the two-ribbon flares of 29 May 2003 and 19 January 2005. In each of these events quasi-periodic pulsations (QPP) with time period of 1 – 3 minutes are evident in both hard X rays and microwaves. The sources of nonthermal HXR emission are situated mainly at the footpoints of the flare arcade loops observed by TRACE and the SOHO/EIT instrument in the EUV range. At least one of the sources moves systematically during and after the QPP phase in each flare. The sources move predominantly parallel to the magnetic inversion line during the 29 May flare and along flare ribbons during the QPP phase of both flares. By contrast, the sources start to show movement perpendicular to the flare ribbons with velocity comparable to that along the ribbons’ movement after the QPP phase. The sources of each pulse are localized in distinct parts of the ribbon during the QPP phase. The measured velocity of the sources and the estimated energy release rate do not correlate well with the flux of the HXR emission calculated from these sources. The sources of microwaves and thermal HXRs are situated near the apex of the flare loop arcade and are not stationary either. Almost all of the QPP as well as some pulses of nonthermal HXR emission during the post-QPP phase reveal soft – hard – soft spectral behavior, indicating separate acts of electron acceleration and injection. In our opinion at least two different flare scenarios based on the Nakariakov et al. (2006, Astron. Astrophys. 452, 343) model and on the idea of current-carrying loop coalescence are suitable for interpreting the observations. However, it is currently not possible to choose between them owing to observational limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号