首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
针对中国南部地区地势西高东低、沿海与内陆存在差异等情况,分析中国南部地区Tm与地面温度、测站高度、季节变化以及纬度的关系,利用中国南部地区19个探空站2015~2017年的探空数据,在Bevis公式的基础上建立只考虑地面温度的线性模型(Tm-SC1模型)和与地面温度、高程、季节变化以及纬度有关的新Tm模型(Tm-SC2模型)。以2018年的探空数据为参考值,对Tm-SC1模型和Tm-SC2模型进行精度验证,并与广泛使用的Bevis公式和GPT3模型进行精度比较。结果表明,Tm-SC1模型的年均偏差和均方根误差(RMS)分别为0.76 K和2.57 K,相比Bevis模型和GPT3模型,其精度(RMS值)分别提高13.8%和2.2%;Tm-SC2模型的年均偏差和均方根误差(RMS)分别为-0.10 K和1.64 K,相比Bevis模型和GPT3模型其精度(RMS值)分别提高44.9%和37.6%。Tm-SC2模型用于GNSS水汽计算导致的理论RMS误差和相对误差分别为0.16 mm和0.43%。因此,Tm-SC2模型更适用于中国南部地区的GNSS水汽探测以及气象研究。  相似文献   

2.
以中国西南地区2015~2017年探空数据为实验数据,使用多层感知器(MLP)神经网络回归方法建立西南地区的加权平均温度(Tm)模型。将气象参数(地表温度、水汽压)和非气象参数(高程、纬度和年积日)作为模型输入因子,由数值积分法计算得到的Tm作为学习目标,通过神经网络模型进行迭代训练从而得到中国西南地区的Tm。以2018年探空站Tm数据为参考值,对MLP模型精度进行验证,并与Bevis模型和GPT3模型进行对比分析。结果表明,MLP模型的年均RMSE和年均bias分别为1.99 K和0.15 K,比Bevis模型、GPT3模型年均RMSE分别降低1.36 K(40.6%)和1.51 K(43.1%),年均bias分别下降0.70 K(82.4%)和1.04 K(87.4%),且该模型在中国西南区域不同高程、纬度和季节的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

3.
针对中国西部地区地形起伏较大等情况,分析大气加权平均温度(Tm)与测站高程、地面温度的关系,利用2014~2016年探空数据,在Bevis模型基础上建立一种与地面温度、高程和季节变化有关的新Tm模型。以2017年探空数据为参考值,对新模型进行精度分析,并与广泛使用的Bevis模型和GPT2w模型进行精度比较。结果表明,以探空数据为参考值,新模型的年均偏差和均方根误差(RMS)分别为-0.08 K和3.89 K,相比Bevis模型、GPT2w-5模型和GPT2w-1模型,其精度(RMS值)分别提高14.3%、20.6%和9.3%。此外,将新Tm模型用于GNSS水汽计算,其水汽计算理论RMS误差和相对误差分别为0.22 mm和1.43%,新模型在中国西部地区的GNSS水汽探测中具有重要的应用价值。  相似文献   

4.
利用中国区域2015~2017年探空数据,建立一种顾及地表温度、地表水汽压、高程和纬度的中国区域大气加权平均温度Tm模型(BET模型)。以2018年探空站Tm数据为参考值,分析BET模型精度,并与Bevis模型和GPT3模型进行对比。结果表明,BET模型年均RMSE与bias分别为3.15 K和0.04 K,相比于Bevis模型、1°×1°分辨率的GPT3模型和5°×5°分辨率的GPT3模型,年均RMSE分别降低29.2%、32.8%和39.1%,年均bias分别降低96.4%、96.7%和97.4%,且该模型在中国区域不同高程和纬度上的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

5.
采用中国区域2017~2018年与GNSS站并址的49个探空站资料对GPT3模型估算的气象参数的精度进行评估,再利用49个GNSS站结合GPT3模型估算的气象参数反演日均大气可降水量PWV,并采用与GNSS站并址的探空站数据对其精度进行评定。实验得出:1)在中国地区,1°分辨率的GPT3模型的精度和稳定性优于5°分辨率,其气压、气温和大气加权平均温度Tm的偏差均值分别为0.73 hPa、1.34 K和-1.67 K,均方根误差均值分别为4.21 hPa、3.75 K和4.15 K;2)利用GPT3模型提供的气温结合Bevis经验公式反演的PWV与GPT3模型提供的Tm反演的PWV精度相当,且2种方法反演的PWV和探空资料实测地表温度反演的PWV呈现很好的一致性,在我国青藏高原和西北地区反演PWV的精度优于我国南方和北方地区。  相似文献   

6.
针对东南沿海地区GNSS大气可降水量(PWV)计算过程参数多、数据量大、效率不高且易产生累积误差等问题,本文基于中国东南沿海地区2017~2018年18个CORS站的GNSS数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(Ts)和地面大气压(Ps)之间的线性关系,并利用多元线性拟合方法建立多因子GNSS-PWV直接转换模型,为研究区提供简捷高效的PWV计算方法。结果表明,GNSS-PWV与ZTD、Ps和Ts之间具有良好的相关性,相关系数分别为0.98、-0.65和0.78;基于ZTD、Ps和Ts的多因子PWV模型RMS为0.33 mm,精度最高,明显优于基于ZTD的单因子PWV模型(4.66 mm),而基于ZTD和Ps的双因子PWV模型RMS为0.50 mm。  相似文献   

7.
选用2012~2017年Kings Park 站探空资料,基于迭代最小二乘方法构建2种香港地区顾及高度改正的加权平均温度模型--Tm_hk1和Tm_hk2,并利用2018年探空资料对模型在香港地区的精度和适用性进行评估。结果表明,在香港地区,依赖测站温度的Tm_hk1模型具有较高的精度,年均偏差优于0.3 K,均方根误差优于1.8 K,与Bevis公式和GPT2w模型相比,Tm_hk1模型的精度分别提升35.4%和29.7%;而不依赖气象参数的Tm_hk2模型与GPT2w模型的精度相当,年均方根误差均优于2.5 K,Bevis公式的精度最差(RMS为2.7 K),且具有较大负偏差(bias为-1.8 K)。从季节性分析可知,Bevis公式、Tm_hk2 和GPT2w模型精度具有明显的季节性变化,总体为夏季精度较高(RMSE为1.3~2.2 K),冬季精度较低(RMSE为3.0~4.4 K);Tm_hk1模型在各季节均具有最高精度(RMSE为1.4~2.4 K)和适用性。  相似文献   

8.
针对区域相对高程对Tm模型影响研究领域的空缺,基于已有的对流层顶经验模型,讨论区域相对高程对Tm模型的影响,并在此基础上构建中国区域的h0Tm回归模型,同时建立青藏高原地区的区域模型h0Tm-Qz。模型检验结果表明:1)以ERA5格网数据为参考值,h0Tm模型的RMS为2.43 K,相比于Bevis公式和GPT2w-1模型,精度分别提高了1.15 K(32%)和0.63 K(21%);2)以探空数据为参考值,h0Tm模型的RMS为2.48 K,相比于Bevis公式和GPT2w-1模型精度分别提高了1.19 K(32%)和2.06 K(45%),h0Tm模型在中国区域表现出较低的误差和良好的稳定性,尤其是在中国西部地区表现出更为显著的优势;3)顾及区域相对高程的青藏高原区域模型h0Tm-Qz相较于该地区的单因子(Ts)区域模型TsTm-Qz和Bevis公式,精度分别提高了0.54 K(19%)和2.50 K(51%)。  相似文献   

9.
提出一种综合GNSS及探空仪数据的对流层折射指数剖面反演模型新方法,利用GNSS观测数据直接采用参数估计计算测站高精度ZTD(zenith troposphere delay)值,结合探空数据构建测站上空折射指数分层剖面反演模型。通过BJFS(北京站)、WUHN(武汉站)、WIND(Windhoek站)和DARW(Darwin站)的实测数据进行相应计算与验证。结果表明,该反演模型与基于探空数据的反演模型精度相当,二者均优于Hopfield模型。同时该方法计算简便,且在模型建立后可以大大减少探空仪观测。  相似文献   

10.
根据长三角地区7个探空站基于积分法计算的2016年大气水汽转换系数(K值),利用多元线性拟合分别构建不顾及高程的Emardson-I精化模型和顾及高程的Emardson-H精化模型,并用2017年的K值验证两种模型的精度。实验结果表明,Emardson-H预报模型的MAE和RMS分别为0.001 297和0.001 616,略优于Emardson-I预报模型的0.001 303和0.001 620;基于两种新模型的GNSS-PWV反演精度相当,其MAE和RMS均优于0.6 mm。因此,Emardson-I模型以其无需实测气象参数和无需顾及高程在长三角地区的地基GNSS气象学实时应用中具有更好的效率优势。  相似文献   

11.
采用积分格林函数方法及6种全球海潮模型(CSR4.0,EOT11a,FES2004,GOT4.7,NAO99b和TPXO7.2)和中国近海潮汐资料,计算了我国沿海大地控制点上的海潮倾斜负荷效应。通过标准差、均方根RMS及和方根RSS等综合分析表明,海潮倾斜负荷普遍为10-8rad量级,最大达10-7rad量级。在中国沿海区域,各模型差异较大,应针对不同区域采用更适合本区的模型计算。  相似文献   

12.
???????????????????6???????????CSR4.0??EOT11a??FES2004??GOT4.7??NAO99b??TPXO7.2?????й????????????????????????????????????????б????Ч????????????????RMS???????RSS????????????????????б????????10-8??rad??????????10-7??rad?????????й??????????????????????????????????????????????  相似文献   

13.
基于多源数据的中国海岸带地区人口空间化模拟   总被引:1,自引:0,他引:1  
海岸带人口聚集、经济增长迅速、生态环境脆弱,容易受到自然灾害的影响,细致的人口空间分布信息对解决海岸带地区资源配置、灾害风险管理等有重要意义。本文以中国沿海城市为研究区,基于NPP-VIIRS和NDVI数据构建人居指数HSI,并加入居住地面积比例系数反映人口内部差异,利用样本动态分区及建模方法,得到2015年中国海岸带1000 m格网人口分布数据(POP),并将其与已公布的相同年份的中国公里格网人口数据(TPOP)和100 m全球人口数据(WorldPOP)进行对比分析。研究表明,3种数据均能反映中国海岸带地区人口的宏观分布特征,但是对于人口分布城乡差异特征以及城市内部人口分布细节特征的刻画,则是以POP数据最为理想。由县域统计值和POP数据可知,主要受沿海地貌、国家及区域经济发展战略等的影响,中国海岸带地区人口分布具有明显的空间差异,具体来说:① 地形差异,山地和滩涂区域的人口密度普遍较低(小于5 人/hm 2),而平原和河口三角洲区域的人口密度则普遍较高(大于10 人/hm 2);② 宏观区域差异,环渤海、长江三角洲和珠江三角洲是人口分布最密集的区域(大于25 人/hm 2);长江以北地区人口分布多层级重心离散分布的特征较为显著,尤其以山东和江苏最为明显,长江以南地区人口分布相对比较集中,主要集中在沿海低地和平原,如浙江—福建—广东一带;③ 城乡差异,由各级城镇向乡村区域递减的趋势非常明显,城市等级越高,人口分布的梯度特征越显著,中心城区、城市近郊、城市远郊之间相比人口密度差异巨大。  相似文献   

14.
基于古登堡平均地球模型和积分格林函数方法,利用中国近海海潮模型Chinasea 2010、Naoregional 1999和全球海潮模型EOT11a,计算中国沿海GNSS连续运行站上的海潮位移负荷影响,并对其均方根RMS及和方根RSS进行综合分析。结果表明,2种近海模型分潮波位移负荷差异水平分量大部分为亚mm级,垂直分量普遍为mm级,最大达5.8 mm;Chinasea 2010模型比Naoregional 1999模型在中国海域覆盖面积大,2种模型在黄海和东海海域差异较大,在渤海和南海海域差异较小;模型差异与测站位置及潮波频率均有关系,应比较观测资料的负荷改正效果,择优采用适宜本区域的模型。  相似文献   

15.
城市内部PM2.5浓度分布具有明显的空间异质性,而传统方法基于遥感数据或监测站点数据进行分析,难以揭示高时空分辨率下城市内部的PM2.5浓度分布特征,缺少不同时刻城市场景(如:道路、工业区、住宅区等)对PM2.5浓度复杂非线性影响的解析。本研究将移动监测传感器安装于快递车上,采集福州市主城区南部不同类型场景的PM2.5浓度,然后融合地理加权回归(Geographical Weighted Regression, GWR)和梯度提升决策树(Gradient Boosting Decision Tree, GBDT)方法,提出一种基于GWR-GBDT的PM2.5模拟与场景解析模型,能够较好地拟合气象、场景因素与PM2.5浓度的非线性关系,提升了城市PM2.5污染精细监测能力;并结合部分依赖图解析不同时段不同场景因素对PM2.5浓度的非线性作用影响。结果表明:① 基于移动PM2.5浓度监测数据,利用GWR-GBDT模型能够较好地模拟城市场景、气象和PM2.5浓度之间的非线性关系,能够有效精细模拟PM2.5浓度的空间分布,十折验证R2结果为0.52~0.94;② 通过部分依赖图分析同一场景在不同时段对PM2.5浓度响应的异质性,发现各类场景对PM2.5浓度提升或抑制作用并不稳定;③ 解析不同时段人类活动与城市场景对PM2.5浓度的交互作用发现,教育医疗单位和住宅区两类场景对PM2.5浓度的提升作用都与人类通勤有密切关系,高污染场景中的建筑工地在采取的洒水降尘措施后能在数小时内有效缓解PM2.5污染,公园文体服务区在多数时段对PM2.5浓度具有抑制作用,工业区和道路多数时段会致使对PM2.5浓度提升;④ 从PM2.5浓度的空间分布来看,福州市主城区南部PM2.5浓度总体呈现东南高-西北低的分布趋势,建筑工地、道路和工业区场景轻度以上污染面积占比明显高于其他场景,公园场景总体PM2.5浓度较低,山体公园傍晚会受到周边工业区的影响而导致PM2.5浓度升高,而城市陆地外围水域对沿岸PM2.5浓度具有抑制作用;⑤ 研究结果可为不同场景下PM2.5污染精细化治理、城市规划以及老人、儿童等高危人群的PM2.5污染暴露风险防范提供支持。  相似文献   

16.
选取中国沿海海洋站中与验潮室并址的22个GNSS基准站近9 a的观测资料,利用最大似然估计法分析各站时间序列的噪声特性,建立最优噪声模型;然后顾及有色噪声,利用最优噪声模型估计测站速度,并与纯白噪声模型和GLOBK获取的速度及误差进行对比分析。结果表明:1)沿海海洋站的GNSS时间序列均含有有色噪声,各分量的噪声特性不完全一致,E方向和U分量均以白噪声+闪烁噪声为主,N分量以白噪声+闪烁噪声和白噪声+一阶马尔科夫噪声+随机漫步噪声为主。2)全国沿海3个海区N、E分量的白噪声和闪烁噪声基本呈现越往南噪声越大的规律,南海海区U分量的白噪声和闪烁噪声最大。3)顾及有色噪声的速度中误差是仅考虑白噪声和GLOBK估计的速度中误差估计值的5~10倍,这种差异比内陆观测站的要大。4)在对海洋站GNSS时间序列进行速度分析时,为获取正确的速度值,应该先准确判断噪声的类型,再顾及有色噪声的影响估计测站速度。  相似文献   

17.
PM2.5已成为人群健康的重要威胁之一,科学精准的暴露评估是PM2.5风险防控的前提,为提升PM2.5暴露精准评估,本文利用土地利用数据、道路数据、气象数据等构建PM2.5土地利用回归反演模型,实现了2013年12月1日-2014年2月8日(冬季)广佛都市区PM2.5时空动态演变监测,在此基础上将PM2.5反演结果与人口密度数据耦合,分别从PM2.5污染浓度与人口加权PM2.5浓度2个方面,评估广佛都市区PM2.5污染暴露风险。研究结果表明:① 土地利用回归模型能够较好的反映研究区域内PM2.5的空间分布特征,R2大于0.78;② 2013年12月1日-2014年2月8日,广佛都市区PM2.5浓度平均值呈现波动变化趋势,研究时段内,最高平均浓度为97.91 μg/m3 (12月29日-1月11日),最低平均浓度为53.40 μg/m3 (1月26日-2月8日),全时段PM2.5浓度超WHO健康标准的面积占比达99.8%;③ 广佛都市区PM2.5的空间分布具有异质性规律,其高值区分别位于广州市天河区、越秀区、番禺区北部、花都区北部及佛山市禅城区、南海区中部、三水区中部,低值区主要位于广州市白云区、番禺区东南部及佛山市顺德区南部。人口加权暴露风险存在2个高值中心,分别位于广州市和佛山市的主城区;④ 耦合人口加权模型前后,广佛都市区PM2.5暴露风险高风险区空间分布发生变化,未考虑人口加权模型时,广佛深高值区较为分散,主要位于南海区、天河区、越秀区、禅城区,考虑人口加权模型后,高值区更加集中于广州市和佛山市的主城区。  相似文献   

18.
利用赣南及邻区2009年以来的地震波形资料,计算249次ML1.8~4.0地震的视应力,同时利用研究区1978年以来的地震目录计算b值。结果表明,视应力值在0.002~2.070 MPa之间,平均值为0.152 MPa;ML2.0~2.9地震视应力的时间变化显示,2009年以来5次ML≥3.5地震(去余震)中有3次震前出现高值异常,空间分布显示ML≥3.0地震均发生在视应力高值区及高低值分界线附近;视应力与震级呈正相关关系;研究区1978年以来的最小完整性震级为ML2.0,b值为0.78,2009年以来ML≥3.0地震多发生在低b值区或其边缘附近;低b值区与视应力高值区分布较为接近,反映出较高的地震活动水平及地壳应力状态。  相似文献   

19.
近年来,PM2.5已成为雾霾爆发的主要污染物之一,人口长期暴露在高浓度的PM2.5中可能会大大的提高居民患病的几率,危害居民身心健康。本研究以空气污染严重且人口高度集中的北京市作为研究区,以2019年北京市的PM2.5浓度监测数据、人口空间分布栅格数据及不同人群的长期呼吸量等为数据基础,构建了“污染物浓度—暴露人口—呼吸量”的PM2.5人口暴露剂量评估模型,进而对北京市2019年的PM2.5人口暴露强度空间分异特征及不同人群的暴露剂量差异进行分析。结果表明:① 2019年北京市的PM2.5浓度在冬季时最高,日均浓度达48.89 μg/m3,并均呈现出北低南高的整体态势;② PM2.5人口暴露量存在显著的空间分异特征,不同人群的PM2.5暴露量均呈现出由城中心向周边减弱的整体态势,高暴露区主要集中于城区地带;③ 不同性别、年龄组人群的PM2.5人口暴露强度存在明显的空间分异特征,且城市内部不同人群的PM2.5暴露剂量也存在明显差异;④ PM2.5的暴露风险并非完全取决于污染物浓度的大小,而是由污染源浓度和暴露受体的空间分布特征等多方面共同决定,北京城区的高PM2.5人口暴露区才是高风险区,是未来政府有效防控污染物危害的核心区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号