首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
青岛鳌山湾海区营养结构分析与营养状况评价   总被引:2,自引:0,他引:2  
根据2004年6月中旬在鳌山湾海区所取得的底层海水营养盐资料,分析了青岛鳌山湾海区营养盐的平面分布特征;运用绝对限制法则和相对限制法则确定了鳌山湾海区的营养盐限制因子;采用营养状态综合指数法和分类分级富营养化评价模式对鳌山湾海域的营养状况进行了评价。结果表明:鳌山湾营养盐限制因子为磷(P),该海区由缺氮转变为缺磷,营养盐结构发生了根本性变化,且该海域无富营养化现象,水质较好。  相似文献   

2.
【目的】研究夏季珠江口水域氮、磷营养盐的时空变化特征及其富营养化水平。【方法】基于珠江口水域2006-2010年夏季水文水质多要素观测资料,采用Pearson相关分析法,分析水文泥沙对氮、磷等营养盐的的驱动作用,评价该水域富营养化状况并阐明其主要环境问题。【结果】珠江口水域环境因子区域分布差异显著,其中营养盐(氮、磷等)和悬浮泥沙均表现为由口门向口外递减,而盐度则表现为相反的趋势。无机氮以硝氮为主,亚硝氮次之,氨氮含量最低。【结论】径流输入、盐淡水混合稀释作用和悬浮泥沙的吸附/解吸作用共同影响着氮、磷营养盐的分布。氮磷比值分析说明,珠江口浮游植物生长主要表现为潜在性的磷限制。珠江口水域海洋环境重度及严重富营养化(E 5)主要集中在口门至内伶仃岛海域,主要环境问题为水质污染,且氮、磷营养盐和溶解氧为主要贡献因子。  相似文献   

3.
【目的】研究秋季雷州半岛海域东西部水体营养盐和叶绿素a(Chl-a)空间变化特征及其相互关系。【方法】根据2017年10月(秋季)的现场调查资料,分别采用镉铜柱还原-重氮偶氮法、重氮偶氮法和硅钼蓝法测定硝酸盐、亚硝酸盐、磷酸盐和硅酸盐,以及萃取荧光法测定Chl-a浓度,深入探讨雷州半岛Chl-a浓度空间变化的调控机制。【结果】2017年秋季,研究区域近岸Chl-a及营养盐浓度大致呈现近岸高离岸低的分布特点;雷州半岛东部海域与西部海域相比,Chl-a浓度、DIN、Si O32-,nDIN/nP比较高,而nSi/nDIN和PO43-在西部略高于东部;营养盐对浮游植物生长的可能限制因子分析结果,在雷州半岛东西部环境因子对Chl-a浓度的影响程度不同,其中盐度和亚硝酸盐是影响Chl-a浓度的主要因子。在浮游植物生长的限制因素方面,雷州半岛东部海域表现为明显的磷限制,西部海域表现为明显的氮限制。【结论】秋季调查海域营养盐和Chl-a结构变化主要受海域水文情况(河流径流,潮汐类型)和人类活动的影响。调查海域东部受到河流径流和不规则半日潮的影响,营养盐、Chl-a浓度以及营养盐比值(PO43-和nSi/nDIN除外)都比较高。西部海域由于河流径流量小、人类活动较少以及受到规则的全日潮的影响,营养盐、Chl-a浓度以及营养盐比值含量较低且分布较均匀。  相似文献   

4.
【目的】研究海南岛近岸海域表层海水化学需氧量(COD)的时空分布特征,评价COD污染水平,研究区域COD浓度与多种环境因子之间的关系。【方法】根据2016年枯水季、丰水季和平水季海南岛近岸海域表层海水现场调查资料,进行单因子指数法和综合指数法分析。【结果】海南省近岸海域表层海水COD的平均质量浓度为(0.75±0.43) mg/L,浓度范围为0.14~2.74 mg/L;COD浓度高值区主要分布在龙尾河口临近小海海域,枯水季研究海域表层海水COD污染水平高于丰水季节;COD对富营养化的贡献范围为38.2%~69.7%,平均贡献率为(51.0±5.1)%,贡献率随着富营养化指数的增加而减小;3个季节COD与盐度均存在显著负相关(P<0.01)。【结论】COD时空分布主要受陆源输入和水动力过程的影响。COD是影响海南岛近岸海域富营养化的重要因子但非决定性因子。随着富营养化程度增加,来自营养盐对富营养化贡献更为显著。  相似文献   

5.
研究了琼东海域冬季(2012年12月)和夏季(2013年8月)表层水体营养盐结构特征和营养盐对浮游植物生长的限制情况。结果表明:2012年冬季,调查海域除了北部站位DIN、Si O32-浓度和nDIN/nP、nSi/nP比值较高之外,其余站位营养盐浓度和比值整体比较低且分布比较均匀,这是由于北部站位受到了具有高浓度DIN、Si O32-和低浓度PO43-的广东沿岸流的影响;2013年夏季,由于夏季河流径流量大,琼东近岸海域受到具有低浓度DIN、PO43-和高浓度Si O32-特征的河流影响,同时夏季近岸生物量增大和层化作用增强,因此DIN和PO43-浓度分布比较均匀,Si O32-浓度和nSi/nDIN、nSi/nP比值呈近岸高离岸低的分布特点。进一步分析该海域营养盐对浮游植物生长的可能限制因子发现,表层水体冬季呈现明显的硅限制,其限制因子几率为58.83%,夏季呈现氮-硅协同限制的可能性。由于生物利用、季节性的河径流量、广东沿岸流以及层化作用的影响,使得营养盐限制因子由冬季的硅限制转变为夏季的氮和硅共同限制。  相似文献   

6.
【目的】分析评价2010-2017年嵊泗马鞍列岛保护区海域的水质状况。【方法】采用水质有机污染指数(A)法进行水质有机污染评价,采用富营养化指数(E)法和营养状态质量指数(INQ)法进行水质富营养化评价。【结果】该保护区海域水质化学需氧量(COD)和溶解氧(DO)符合第一类海水水质标准,无机磷(DIP)含量有3个年份符合第一类海水水质标准,其余年份超过第一类但符合第二类海水水质标准,无机氮(DIN)质量浓度超标严重,2015年达到0.674 mg/L;叶绿素a(Chl-a)本底含量较高,适宜条件下使得浮游植物大量繁殖,Chl-a含量急剧上升,并容易诱发赤潮;有机污染指数评价显示,2012-2015年水质有机污染状况达到中度污染以上,并且有3年达到严重污染级别,最大A值为2014年和2015年的4.10,2016年污染最轻,为开始受到污染级别;富营养化指数和营养状态质量指数评价显示,最大E值和INQ值分别为2012年的4.29和2010年的8.59,DIN含量高是富营养化的主要贡献因子。【结论】该保护区海域水质主要污染因子为DIN,水质有机污染状况呈现年度波动状态,水质富营养化较严重。  相似文献   

7.
<正>问题频现:来自海洋的警报近十多年来,由于入海流域和沿海地区经济社会高速发展,各类污染物,特别是氮、磷等营养盐排放的大幅增加,我国近岸海域的水质呈缓慢下降趋势,局部海域污染较为严重,海洋环境保护工作面临巨大压力,警报频传。氮磷引起的富营养化问题突出,赤潮灾害多发。我国近岸海域富营养  相似文献   

8.
采用单因子实验方法研究氮、磷和硅营养盐对条纹小环藻(Cyclotella striata)生长和叶绿素a含量的影响。结果表明:在不同磷和硅营养盐浓度下,条纹小环藻比生长率μ变化显著(P<0.05),其中,硝酸盐为0.60~0.85 d-1,硅酸盐为0.49~0.61 d-1,磷酸盐为0.46~0.51 d-1。总体而言,在一定的营养盐浓度范围内,条纹小环藻的最大藻细胞密度Nmax随着氮、磷和硅营养盐浓度的增加而增大;条纹小环藻叶绿素a(Chl a)含量亦随着氮、硅浓度的增加,与Nmax增加趋势一致,但随着磷浓度的增加Chl a先增加后减小,与Nmax不一致。条纹小环藻的主要限制营养元素是氮和硅,而磷可能不会成为其短期培养的限制因子。  相似文献   

9.
【目的】研究珠江口海域营养物和叶绿素a的时空分布特征。【方法】根据2015年5月(春季)、8月(夏季)和10月(秋季)3个季节的现场调查资料,通过对3个季节浮游植物Chl-a以及包括氮磷比在内的营养结构进行综合分析,深入探讨珠江口海域浮游植物Chl-a的时空变化调控机制。【结果】珠江口海域各季节营养盐呈高氮低磷分布,3个季节N︰P均值49.6。叶绿素a季节差异明显,夏季叶绿素a含量是春季的2倍、秋季的9倍。【结论】春季浮游植物生长受温度影响较大,夏、秋两季由于外海水的入侵导致磷限制比较显著;DIN能满足各季节浮游植物生长的需要,珠江口海域浮游植物生长对于磷营养盐的响应要优于氮营养盐。  相似文献   

10.
利用2008~2011年共6个航次调查数据,对雷州半岛近岸海域关键水质环境因子进行时空分析,并采用富营养指数法对该海域水质环境进行了评价,结果表明:该海域近几年COD、PO4-P、NO2-N、NO3-N、NH4-N、石油类、叶绿素浓度等关键水质因子的均值变化范围分别为0.61~1.71 mg/L、0.01~0.04 mg/L、0.004~0.05 mg/L、0.05~0.21 mg/L、0.02~0.20 mg/L、0.01~0.60 mg/L、1.16~3.17μg/L。该海域COD、石油类污染程度较低,而PO4-P、无机氮污染程度高、污染风险大。半岛东部海域污染程度高于西部海域,尤其是湛江港、雷州湾及半岛东北海域呈高富营养化水平。  相似文献   

11.
A three-dimensional ecosystem model, using a PIC (Particle-In-Cell) method, is developed to reproduce the annual cycle and seasonal variation of nutrients and phytoplankton biomass in Laizhou Bay. Eight state variables, i.e., DIN (dissolved inorganic nitrogen), phosphate, DON (dissolved organic nitrogen), DOP (dissolved organic phosphorus), COD (chemical oxygen demand), chlorophyll-a (Chl-a), detritus and the zooplankton biomass, are included in the model. The model successfully reproduces the observed temporal and spatial variations of nutrients and Chl-a biomass distributions in the bay. The nutrient concentrations are at high level in winter and at low level in summer. Double-peak structure of the phytoplankton (PPT) biomass exists in Laizhou Bay, corresponding to a spring and an autumn bloom respectively. Several numerical experiments are carried out to examine the nutrient limitation, and the importance of the discharges of the Yellow River and Xiaoqinghe River. Both DIN limitation and phosphate limitation exist in some areas of the bay, with the former being more significant than the latter. The Yellow River and Xiaoqinghe River are the main pollution sources of nutrients in Laizhou Bay. During the flood season, the algal growth is inhibited in the bay with the Yellow River discharges being excluded in the experiment, while in spring, the algal growth is enhanced with the Xiaoqinghe River excluded.  相似文献   

12.
INTRODUCTIONNandPinputtedintoJiaozhouBaybyriversandbysewageeffluentsofcities ,havemadetheBaybecomemoreandmoreeutrophicdaybyday .Shen ( 1994)thoughtthatphytoplanktongrowthwaslimitedbythechangefromnitrogentophosphorous ;andthatthesilicateconcentrationinJiaozh…  相似文献   

13.
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 (12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si∶DIN and Si∶16P ratios and the seasonal variation of Jiaozhou Bay Si∶DIN and Si∶16P ratios showing that the Si∶DIN ratios were <1 throughout the year in Jiaozhou Bay; and that the Si∶16P ratios were <1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si∶DIN and Si∶P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN∶P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem. This study was funded by the NSFC (No. 40036010) and subsidized by Special Funds from the National Key Basic Research Program of P. R. China (G199990437), the Postdoctoral Foundation of Ocean University of Qingdao, the Director's Foundation of the Beihai Monitoring Center of the State Oceanic Administration and the Foundation of Shanghai Fisheries University.  相似文献   

14.
INTRODUCTIONRedtidecanadverselyaffectcoastalfisheriesbycausingthedeathofculturedfishandshrimporproducingtoxinsthatcanbeaccumulatedthroughfoodchains (Anderson ,1 989) .Phytoplanktonisoftenthemaincomponentofmanyredtides.AlongthecoastofJiaozhouBay ,P .R .China,theredtideismainlyformedbyadinoflagellate ,Scrippdiellatrochoidea ,duringsummer (JulytoSep tember)andthecelldensitycanreach 9.98× 1 0 7cells ml (Zou ,unpublisheddata) .Manyresearcherssuggestedthatredtideofphytoplanktonmightresultf…  相似文献   

15.
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 revealed the spatiotemporal variations of the ambient Si(OH)4:NO3 (Si:N) concentration rations and the seasonal variations of (Si:N) ratios in Jiaozhou Bay and showed that the Si:N ratios were <1 throughout Jiaozhou Bay in spring, autumn, and winter. These results provide further evidence that silicate limits the growth of phytoplankton (i.e. diatoms) in spring, autumn and winter. Moreover, comparison of the spatiotemporal variations of the Si:N ratio and primary production in Jiaozhou Bay suggested their close relationship. The spatiotemporal pattern of dissolved silicate matched well that of primary production in Jiaozhou Bay. Along with the environmental change of Jiaozhou Bay in the last thirty years, the N and P concentrations tended to rise, whereas Si concentration showed cyclic seasonal variations. With the variation of nutrient Si limiting the primary production in mind, the authors found that the range of values of primary production is divided into three parts: the basic value of Si limited primary production, the extent of Si limited primary production and the critical value of Si limited primary production, which can be calculated for Jiaozhou Bay by Equations (1), (2) and (3), showing that the time of the critical value of Si limitation of phytoplankton growth in Jiaozhou Bay is around November 3 to November 13 in autumn; and that the time of the critical value of Si satisfaction of phytoplankton growth in Jiaozhou Bay is around May 22 to June 7 in spring. Moreover, the calculated critical value of Si satisfactory for phytoplankton growth is 2.15–0.76 μmol/L and the critical value of Si limitation of phytoplankton growth is 1.42–0.36 μmol/L; so that the time period of Si limitation of phytoplankton growth is around November 13 to May 22 in the next year; the time period of Si satisfactory for phytoplankton growth is around June 7 to November 3. This result also explains why critical values of nutrient silicon affect phytoplankton growth in spring and autumn are different in different waters of Jiaozhou Bay and also indicates how the silicate concentration affects the phytoplankton assemblage structure. The dilution of silicate concentration by seawater exchange affects the growth of phytoplankton so that the primary production of phytoplankton declines outside Jiaozhou Bay earlier than inside Jiaozhou Bay by one and half months. This study showed that Jiaozhou Bay phytoplankton badly need silicon and respond very sensitively and rapidly to the variation of silicon. This study was funded by NSFC (No. 40036010) and subsidized by Special Funds from National Key Basic Research Program of P. R. China (G19990437), the Postdoctoral Foundation of Ocean University of Qingdao, the Director's Foundation of the Beihai Monitoring Center of the State Oceanic Administration and the Foundation of Shanghai Fisheries University.  相似文献   

16.
INTRODUCTIONTheproductionofphytoplanktonisthefirsttacheintheproductionbymarineorganismsandinthemarinefoodchain .Knowledgeofprimaryproductioninmarinewatersisprerequisiteforexploitationandmanagementoftheocean’slivingresources.Theprimaryproductioninmarin…  相似文献   

17.
The increasing riverine pollutants have resulted in nutrient enrichment and deterioration of water quality in the coastal water of Guangxi Province, China. However, the quantitative relationship between nutrient loads and water quality responses, which is crucial for developing eutrophication control strategies, is not well studied. In this study, the riverine fluxes of nutrients were quantified and integrated with nutrient cycling and phytoplankton dynamics by using box models for Guangxi coastal bays. The model concepts and biogeochemical equations were the same; while most model parameters were specific for each bay. The parameters were calibrated with seasonal observations during 2006–2007, and validated with yearly averaged measurements in 2009. The general features of nutrient and phytoplankton dynamics were reproduced, and the models were proved feasible under a wide range of bay conditions. Dissolved inorganic nitrogen was depleted during the spring algal bloom in Zhenzhu Bay and Fangcheng Bay with relatively less nutrient inputs. Phosphorus concentration was high in spring, which decreased then due to continuous phytoplankton consumption. Chlorophyll-a concentration reached its annual maximum in summer, but was the minimum in winter. Eutrophication was characterized by both an increase in nutrient concentrations and phytoplankton biomass in Lianzhou Bay. Either about 80% reduction of nitrogen or 70% reduction of phosphorus was required to control the algal bloom in Lianzhou Bay. Defects of the models were discussed and suggestions to the environmental protection of Guangxi coastal bays were proposed.  相似文献   

18.
根据1998年11月对大亚湾大鹏澳网箱养殖区进行的定点24h连续水质监测资料,分析并讨论了该养殖区海水生物-化学各要素的垂直分布和周日变化规律,并用单项指标评价法和改进的营养状态质量指数(NQI)法,参照营养指数(E)对该网箱养殖区海水的营养状况进行了评价和研究.结果表明,各项要素的平均值大都是表层>中层>底层;周日变化主要受潮汐运动和海水中生物的节律性生理活动的综合影响;表层海水的富营养化率明显高于中层海水,其各单项指标处于中度一富营养状态,而中层和底层海水则分别处于贫一中度和贫-富营养状态;PO4-P相对较贫乏,为养殖区富营养化的最关键限制因素.  相似文献   

19.
Scrippsiella trochoidea (Stein) Loeblich III was grown in a nitrogen-or phosphorus-limited batch culture system in laboratory. Growth rates and cellular Chl-a were measured as functions of nitrate and phosphate concentrations. Growth rates were hyperbolic with both nitrate and phosphate concentration and fit the Monod equation. The minimum cell quota of nitrogen and phosphorus and then the optimum N∶P ratio ofS. trochoidea were estimated in this study. Measurement of phosphate concentration in Jiaozhou Bay suggest that phosphorus is the limiting factor ofS. trochoidea growth. Contribution No. 3679 from the Institute of Oceanology, Chinese Academy of Sciences. Project 39790110 supported by NSFC, the study aslo supported by the National Climbing Project B (PDBG-7-2) and partly supported by an MF grant from Hong Kong University of Science and Technology.  相似文献   

20.
Using historical and 2010 field data, the distribution of nutrients in the northern Beibu Gulf of China is described. There was a decreasing trend in the concentration of nutrients from the north coast to offshore waters of the northern Beibu Gulf, reflecting the influence of inputs from land-based sources. High concentrations of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P) occurred mainly at Fangchenggang Bay, Qinzhou Bay, and Lianzhou Bay. Four different methods were used to assess eutrophication. The trophic status of the Beibu Gulf was characterized using the single factor, Eutrophication index (El), Trophic index (TRIX) and Assessment of Estuarine Trophic Status (ASSETS) methods. Based on nutrient concentrations, 73.9% of DIN and 26.7% of PO4-P samples exceeded the fourth grade Seawater Quality Standard of China. Eutrophication index values varied widely, but higher levels of eutrophication were generally found in bays and estuaries. TRIX values ranged from 2.61 to 7.27, with an average of 4.98, indicating a mesotrophic and moderately productive system. A positive correlation between TRIX and harmful algal species richness and abundance was observed. The ASSETS model evaluates eutrophication status based on a Pressure-State-Response approach, including three main indices: influencing factors, overall eutrophic condition, and future outlook. The Beibu Gulf was graded as moderate using ASSETS. The single factor and Chinese nutrient index methods were considered inadequate for the assessment of trophic status. TRIX can be used as an indicator of trophic state and ASSETS showed good potential to assess eutrophication. The results of TRIX and ASSETS depend on threshold values. To establish these values, further research is required within the northern Beibu Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号