首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppby) is unprecedented during the past Glacial-Interglacial climate cycles.  相似文献   

2.
The Antarctic and Arctic are sensitive to global climate change; therefore, they are key regions of global climate change research. This paper, the progress in scientific investigations and research regarding the atmosphere in the polar regions over the last 30 years by Chinese scientists is summarized. Primary understanding of the relationship between the polar regions and global change, especially, the variations in time and space in the Antarctic and Arctic regions with respect to climate change is indicated. Operational weather forecasts for investigation of the polar regions have also been established. Moreover, changes in sea ice and their impact on the atmosphere of polar regions have been diagnosed and simulated. Parameterization of the atmospheric boundary layer of different underlying layers and changes in the atmospheric ozone in the polar region has also been experimented. Overall, there has been great progress in studies of the possible impact of changes in the atmospheric environment of polar regions on circulation in East Asia and the climate of China.  相似文献   

3.
Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon(SASM) and upper ocean heat content(HC) in the tropical Indo-Pacific Ocean.The monsoon was differentiated into a Southwest Asian Summer Monsoon(SWASM)(2.5°–20°N,35°–70°E) and Southeast Asian Summer Monsoon(SEASM)(2.5°–20°N,70°–110°E).Results show that before the 1976/77 climate shift,the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean.The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow.The tropical Pacific impacted the SWASM through the remote forcing of ENSO.After the 1976/77 shift,there was a close relationship between equatorial central Pacific HC and the SEASM.However,before that shift,their relationship was weak.  相似文献   

4.
本文应用统计方法分析陆雪和海冰与东亚夏季风的关系。分析结果表明:前期海冰和陆雪,对夏季风强度有影响,而与夏季风同时的海冰和陆雪的异常,却与夏季风相关甚小,这是由于大气状况的变化与下垫面的能量储放有关。本文初步探讨北极海冰对东亚夏季风影响的可能途径,认为海冰通过大西洋海温、大西洋副热带高压及青藏高压,由夏季对流层上层的东西热力环流圈和季风环流圈,对东亚夏季风起一定影响。  相似文献   

5.
DRY-WET EVOLUTION IN GUANGDONG PROVINCE DURING LAST 500 YEARS   总被引:1,自引:0,他引:1  
1 INTRODUCTIONThe global warming change has already become one ofthe focuses that many scientists pay attention to, and theprecipitation change of China is also one part of thequestionsunder the whole world changes today. Accord-ing to the actual material analysis, the climate in Chinahad a warm-dry tendency in a wide spread range duringthe past one hundred years (ZHAO, 1993), and it couldnot draw a verdict as for future tendency at present. Fol-lowing the thought of Prof. HUANG Bing…  相似文献   

6.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

7.
In order to reconstruct the paleoproductivity evolution history of the West Philippine Sea during the last 700 ka,the vertical gradient of δ 13 C in dissolved inorganic carbon(δ 13 C between those of foraminifera Pulleniatina obliquiloculata and Cibicidoides wuellerstorfi) and planktonic foraminiferal assemblages were analysed in piston Core MD06-3047 retrieved from the Benham Rise(east of the Luzon Island).Paleoproductivity evolution in the West Philippine Sea during the last 700 ka is closely related to glacial-interglacial cycles and precession-controlled insolation.Controlling factors of paleoproductivity could have been both thermocline fluctuations related with ENSO-like processes and eolian input associated with East Asian winter monsoon,and the former could have been the primary factor.A higher productivity and a shallower thermocline coeval with the occurrence of low CO 2 concentrations in the EPICA Dome C ice core might indicate that biological export production in the low-latitude could act as a significant sink in the global carbon cycle,and modify atmospheric CO 2 concentrations.Spectral analysis further reveals that the paleoproductivity is mainly controlled by thermocline fluctuations subjected to ENSO processes responding to processional variability of insolation.High coherences in eccentricity,obliquity and precession periods further revealing the close link between thermocline fluctuations,paleoproductivity and atmospheric CO 2 levels.  相似文献   

8.
Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation(NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario(the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.  相似文献   

9.
Investigations of atmospheric composition in the Himalayas has been limited in both temporal and spatial scales, mainly due to difficult logistics. Ideal sites for monitoring atmospheric composition and its evolution should be free from local pollution and representative of the remote troposphere (HUEBERT et al., 1980). As the Himalayas are far removed from highly industrialized regions they provide suitable locations to monitor the chemistry of the remote troposphere and to study the evolu…  相似文献   

10.
The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range(SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field(SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift,which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum(LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations.This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26m Equilibrium Line Altitude(ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio(AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.  相似文献   

11.
Measurement of ice velocities of the Antarctic glaciers is very important for studies on Antarctic ice and snow mass balance. The polar area environmental change and its influences on the global environment. Conventional methods may be used for measuring the ice velocities, but they suffer from severe weather conditions in the Polar areas. Use of satellite multi-spectral and muki-temporal images makes it easier to measure the velocities of the glacier movements. This paper discusses a new method for monitoring the glacial change by means of multi-temporal satellite images. Temporal remotely sensed images in the Ingrid Christensen coast were processed with respect to geometric rectification, registration and overlay, The average ice velocities of the Polar Record Glacier and the Dark Glacier were then calculated, with the changing characteristics analyzed and evaluated. The advantages of the method reported here include promise of all-weather operation and potentials of dynamic monitoring through suitabl  相似文献   

12.
The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km~3, and the ground ice volume per unit volume was(0.31 ± 0.11) m~3/m~3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content.  相似文献   

13.
Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Dcsert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, Belling, Older Dryas, AllerФd, lntra-AllerФd Cold Period (1ACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (BФlling/AllerФd) period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore,the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand,the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.  相似文献   

14.
The variations of sea ice are different in different regions in Antarctica, thus have different impacts on local atmospheric circulation and global climatic system. The relationships between the sea ice in Ross Sea and Weddell Sea regions and the synoptic climate in summer of China are investigated in this paper via diagnostic analysis methods by using global sea ice concentration gridded data covering Jan. 1968 through Dec. 2002 obtained from Hadley Center, combined with Geopotential Height on 500hPa and 100hPa over North Hemisphere and monthly precipitation and air temperatures data covering the corresponding period over 160 meteorological stations in China obtained from CMA ( China Meteorological Administration). Results disclose that both these two regions are of indicative meanings to the climate in summer of China. The Ross Sea Region is the key sea ice region to the precipitation in Northeast China in summer. More sea ice in this region in September will result in less precipitation in Northeast China in the following June. Weddell Sea Region is the key sea ice region to the air temperature in Northeast China in summer. More sea ice in this region in September will contribute to lower air temperature in Northeast China in the following June.  相似文献   

15.
A 700-year record (1.0–1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMS14C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite δ18O record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324–1 986 cm/ka) between 5.9–5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BP, which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.  相似文献   

16.
Tian  Ying  Wang  Qi 《中国海洋湖沼学报》2010,28(6):1281-1289
We analyze statistically different definitions of the South China Sea summer monsoon (SCSSM) onset are to establish a SCSSM onset time series that is more recognizable by a majority of indicators. With the acknowledged index, we determine a key area (105°E–112.5°E, 7.5°N–12.5°N) and define the zonal wind component in this key area as a new SCSSM onset index, using daily mean reanalysis data of the National Center for Environmental Prediction/National Center for Atmospheric Research. The atmospheric circulations before and after the onset of the SCSSM determined using the index defined in this paper are preliminarily studied. Results show that the Somalia cross-equatorial flow is enhanced, the strongest westerly wind in the tropical Indian Ocean shifts northward, the cyclone couple in the Bay of Bengal and the Southern Hemisphere weaken and move eastward, convection over the South China Sea increases, and the subtropical high retreats from the South China Sea after the outbreak of the SCSSM. By analyzing the atmospheric circulation, it is found that in 1984 and 1999, the SCSSM broke out in pentads 29 and 23, respectively, which is consistent with the onset times determined using our index.  相似文献   

17.
Shoot density, standing crop (above- and below-ground biomass) and habitat of salt marsh grass Porteresia coarctata were investigated along the coast of Bakkhali estuary, Cox’s Bazar, Bangladesh from January to December 2006. Shoot density of P. coarctata was influenced by season and was found to be higher (>2 500 shoots/m 2 ) in post-monsoon and minimal in monsoon season; plants were particularly active in vegetative propagation during pre-monsoon. Above-ground biomass was greater along the protected coast compared with the exposed one in this estuary. Below-ground biomass was higher (7.75-269.53 g DW/m 2 ) than that above ground (2.20-114.75 g DW/m 2 ). Standing crops of P. coarctata showed a negative relationship (R=-0.77; P<0.05) with sedimentation rate, while seasonal activity influenced sedimentation. The recorded sedimentation rate was lower (6.09 mg/(cm 2 ·d)) in pre-monsoon and highest (14.55 mg/(cm 2 ·d)) in monsoon season. The mean value of pore water salinity was higher (34.25±5.05) during post-monsoon and lowest (18.0±3.71) in monsoon season. The soil was sandy clay in this P. coarctata bed; it consisted of 86% sand, 13% clay and 1% silt. Soil organic matter dropped during the monsoon season (0.78%-0.67%) and was highest ((2.17±1.42)%-(2.3±1.47)%) during post-monsoon, probably owing to accumulation of decomposed peat on the marsh surface. The mean pore water NH 4 -N concentration ranged from 2.44±1.65 to 3.33±1.82 μg/L, with a minimum air temperature of 22.09°C in post-monsoon and a maximum of 31.16°C in pre-monsoon. Variations of physico-chemical parameters in the soil, water, and climate governed biological parameters of P. coarctata in the Bakkhali estuary, and were comparable with estuarine environments elsewhere.  相似文献   

18.
As an important part of global climate system, the Polar sea ice is effccting on global climate changes through ocean surface radiation balance, mass balance, energy balance as well as the circulating of sea water temperature and salinity. Sea ice research has a centuries - old history. The many correlative sea ice projects were established through the extensive international cooperation during the period from the primary research of intensity and the boaring capacity of sea ice to the development of sea/ice/air coupled model. Based on these reseamhes, the sea ice variety was combined with the global climate change. All research about sea ice includes: the physical properties and processes of sea ice and its snow cover, the ecosystem of sea ice regions, sea ice and upper snow albedo, mass balance of sea ice regions, sea ice and climate coupled model. The simulation suggests that the both of the area and volume of polar sea ice would be reduced in next century. With the developing of the sea ice research, more scientific issues are mentioned. Such as the interaction between sea ice and the other factors of global climate system, the seasonal and regional distribution of polar sea ice thickness, polar sea ice boundary and area variety trends, the growth and melt as well as their influencing factors, the role of the polynya and the sea/air interactions. We should give the best solutions to all of the issues in future sea ice studying.  相似文献   

19.
Antarctic sea ice has experienced an increasing trend in recent decades, especially in the Ross Sea and Indian Ocean sectors. Sea ice variability affects greatly the maritime airmass transport from high latitude to Antarctic continent. Here we present a new ice core record of sea salt sodium(ssNa+) concentration at annual-resolution in the Princess Elizabeth Land spanning from 1990 to 2016, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent(SIE) in the Southern Indian Ocean(SIO) given their significant correlation(R =-0.6, P 0.01) over the past 27 years. The correlation and composite analyses results show that the ssNa~+ at the 202 km inland from Zhongshan Station and the SIE changes in SIO are closely related to the Indian Ocean Dipole(IOD) and Southern Annular Mode(SAM). The northward wind in central SIO occurs during positive IOD and the strengthened westerlies occurs during positive SAM, both of which favor increased sea ice in SIO and lead to the decreased ssNa~+ concentration at the coastal site.  相似文献   

20.
Gas hydrates-the firm crystal connections formed water (water, ice, water vapor) and low-molecular waterproof natural gases (mainly methane) whose crystal structure effectively compresses gas: each cubic meter of hydrate can yield over 160 m3 of methane.In present time exploitation of the Messoyahsk (Russia) and Mallik (Canada) deposits of gas hydrates in is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments in round extent depends on improvement of geophysical and well test research, among which native-state core drilling is one of the major. Sampling native-state core from gas hydrates sediments keeping not only original composition, but structural-textural features of their construction.Despite of appeal of use gas hydrates as the perspective and ecologically pure fuel possessing huge resources, investigation and development of their deposits can lead to a number of the negative consequences connected with arising hazards for maintenance of their technical and ecological safety of carrying out. Scales of arising problems can change from local up to regional and even global.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号