首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Climate variation and land transformations related to exploitative land uses are among the main drivers of vegetation productivity decline and ongoing land degradation in East Africa. We combined analysis of vegetation trends and cumulative rain use efficiency differences (CRD), calculated from 250-m MODIS NDVI time-series data, to map vegetation productivity loss over eastern Africa between 2001 and 2011. The CRD index values were furthermore used to discern areas of particular severe vegetation productivity loss over the observation period. Monthly 25-km Tropical Rainfall Measuring Mission (TRMM) data metrics were used to mask areas of rainfall declines not related to human-induced land productivity loss. To provide insights on the productivity decline, we linked the MODIS-based vegetation productivity map to land transformation processes using very high resolution (VHR) imagery in Google Earth (GE) and a Landsat-based land-cover change map. In total, 3.8 million ha experienced significant vegetation loss over the monitoring period. An overall agreement of 68% was found between the rainfall-corrected MODIS productivity decline map and all reference pixels discernable from GE and the Landsat map. The CRD index showed a good potential to discern areas with ‘severe’ vegetation productivity losses under high land-use intensities.  相似文献   

2.
The mountainous areas of the northwestern Iberian Peninsula have undergone intense land abandonment. In this work, we wanted to determine if the abandonment of the rural areas was the main driver of landscape dynamics in Gerês–Xurés Transboundary Biosphere Reserve (NW Iberian Peninsula), or if other factors, such as wildfires and the land management were also directly affecting these spatio-temporal dynamics. For this purpose, we used earth observation data acquired from Landsat TM and ETM + satellite sensors, complemented by ancillary data and prior field knowledge, to evaluate the land use/land cover changes in our study region over a 10-year period (2000–2010). The images were radiometrically calibrated using a digital elevation model to avoid cast- and self-shadows and different illumination effects caused by the intense topographic variations in the study area. We applied a maximum likelihood classifier, as well as other five approaches that provided insights into the comparison of thematic maps. To describe the land cover changes we addressed the analysis from a multilevel approach in three areas with different regimes of environmental protection. The possible impact of wildfires was assessed from statistical and spatially explicit fire data. Our findings suggest that land abandonment and forestry activities are the main factors causing the changes in landscape patterns. Specifically, we found a strong decrease of the ‘meadows and crops’ and ‘sparse vegetation areas’ in favor of woodlands and scrublands. In addition, the huge impact of wildfires on the Portuguese side have generated new ‘rocky areas’, while on the Spanish side its impact does not seem to have been a decisive factor on the landscape dynamics in recent years. We conclude rural exodus of the last century, differences in land management and fire suppression policies between the two countries and the different protection schemes could partly explain the different patterns of changes recorded in these covers.  相似文献   

3.
The Arctic is experiencing disproportionate warming relative to the global average, and the Arctic ecosystems are as a result undergoing considerable changes. Continued monitoring of ecosystem productivity and phenology across temporal and spatial scales is a central part of assessing the magnitude of these changes. This study investigates the ability to use automatic digital camera images (DCIs) as proxy data for gross primary production (GPP) in a complex low Arctic wetland site. Vegetation greenness computed from DCIs was found to correlate significantly (R2 = 0.62, p < 0.001) with a normalized difference vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid functions for each plant community. GPP at light saturation modeled from eddy covariance (EC) flux measurements were found to correlate significantly with vegetation greenness for all plant communities in the studied year (i.e., 2010), and the highest correlation was found between modeled fen greenness and GPP (R2 = 0.85, p < 0.001). Finally, greenness computed within modeled EC footprints were used to evaluate the influence of individual plant communities on the flux measurements. The study concludes that digital cameras may be used as a cost-effective proxy for potential GPP in remote Arctic regions.  相似文献   

4.
The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011–2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China.The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct validation are obtained for GLASS LAI (r = 0.35, RMSE = 1.72, mean bias = −0.71) and MODIS LAI (r = 0.49, RMSE = 1.75, mean bias = −0.67). GLASS performs similarly to MODIS, but may be marginally inferior to MODIS based on our direct validation results. The validation experience demonstrates the necessity and importance of topographic consideration for LAI estimation over mountain areas. Considerable attention will be paid to the improvements of surface reflectance, retrieval algorithm and land cover types so as to enhance the quality of LAI products in topographically complex terrain.  相似文献   

5.
Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.  相似文献   

6.
In perennial and natural vegetation systems, monitoring changes in vegetation over time is of fundamental interest for identifying and quantifying impacts of management and natural processes. Subtle changes in vegetation cover can be identified by calculating the trends of a vegetation density index over time. In this paper, we apply such an index-trends approach, which has been developed and applied to time series Landsat imagery in rangeland and woodland environments, to continental-scale monitoring of disturbances within forested regions of Australia. This paper describes the operational methods used for the generation of National Forest Trend (NFT) information, which is a time-series summary providing visual indication of within-forest vegetation changes (disturbance and recovery) over time at 25 m resolution. This result is based on a national archive of calibrated Landsat TM/ETM+ data from 1989 to 2006 produced for Australia's National Carbon Accounting System (NCAS). The NCAS was designed in 1999 initially to provide consistent fine-scale classifications for monitoring forest cover extent and changes (i.e. land use change) over the Australian continent using time series Landsat imagery. NFT information identifies more subtle changes within forested areas and provides a capacity to identify processes affecting forests which are of primary interest to ecologists and land managers. The NFT product relies on the identification of an appropriate Landsat-based vegetation cover index (defined as a linear combination of spectral image bands) that is sensitive to changes in forest density. The time series of index values at a location, derived from calibrated imagery, represents a consistent surrogate to track density changes. To produce the trends summary information, statistical summaries of the index response over time (such as slope and quadratic curvature) are calculated. These calculated index responses of woody vegetation cover are then displayed as maps where the different colours indicate the approximate timing, direction (decline or increase), magnitude and spatial extent of the changes in vegetation cover. These trend images provide a self-contained and easily interpretable summary of vegetation change at scales that are relevant for natural resource management (NRM) and environmental reporting.  相似文献   

7.
Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.  相似文献   

8.
Land cover roughness coefficients (LCRs) have been used in multivariate spatial models to test the mitigation potential of coastal vegetation to reduce impacts of the 2004 tsunami in Aceh, Indonesia. Previously, a Landsat 2002 satellite imagery was employed to derive land cover maps, which were then combined with vegetation characteristics, i.e., stand height, stem diameter and planting density to obtain LCRs. The present study tested LCRs extracted from 2003 and 2004 Landsat (30 m) images as well as a combination of 2003 and 2004 higher spatial resolution SPOT (10 m) imagery, while keeping the previous vegetation characteristics. Transects along the coast were used to extract land cover, whenever availability and visibility allowed. These new LCRs applied in previously developed tsunami impact models on wave outreach, casualties and damages confirmed previous findings regarding distance to the shoreline as a main factor reducing tsunami impacts. Nevertheless, the models using the new LCRs did not perform better than the original one. Particularly casualties models using 2002 LCRs performed better (δAIC > 2) than the more recent Landsat and SPOT counterparts. Cloud cover at image acquisition for Landsat and low area coverage for SPOT images decreased statistical predictive power (fewer observations). Due to the large spatial heterogeneity of tsunami characteristics as well as topographic and land-use features, it was more important to cover a larger area. Nevertheless, if more land cover classes would be referenced and high resolution imagery with low cloud cover would be available, the full benefits of higher spatial resolution imagery used to extract more precise land use roughness coefficients could be exploited.  相似文献   

9.
The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but typically fail to express such differences as gradients. Present interpretation techniques still make insufficient use of freely available spatial-temporal Earth Observation (EO) data that allow detection of existing land cover gradients. This study explores the use of hyper-temporal NDVI imagery to detect and delineate land cover gradients analyzing the temporal behavior of NDVI values. MODIS-Terra MVC-images (250 m, 16-day) of Crete, Greece, from February 2000 to July 2009 are used. The analysis approach uses an ISODATA unsupervised classification in combination with a Hierarchical Clustering Analysis (HCA). Clustering of class-specific temporal NDVI profiles through HCA resulted in the identification of gradients in landcover vegetation growth patterns. The detected gradients were arranged in a relational diagram, and mapped. Three groups of NDVI-classes were evaluated by correlating their class-specific annual average NDVI values with the field data (tree, shrub, grass, bare soil, stone, litter fraction covers). Multiple regression analysis showed that within each NDVI group, the fraction cover data were linearly related with the NDVI data, while NDVI groups were significantly different with respect to tree cover (adj. R2 = 0.96), shrub cover (adj. R2 = 0.83), grass cover (adj. R2 = 0.71), bare soil (adj. R2 = 0.88), stone cover (adj. R2 = 0.83) and litter cover (adj. R2 = 0.69) fractions. Similarly, the mean Sorenson dissimilarity values were found high and significant at confidence interval of 95% in all pairs of three NDVI groups. The study demonstrates that hyper-temporal NDVI imagery can successfully detect and map land cover gradients. The results may improve land cover assessment and aid in agricultural and ecological studies.  相似文献   

10.
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.  相似文献   

11.
Worldwide, coral reef ecosystems are being increasingly threatened by sediments loads from river discharges, which in turn are influenced by changing rainfall patterns due to climate change and by growing human activity in their watersheds. In this case study, we explored the applicability of using remote sensing (RS) technology to estimate and monitor the relationship between water quality at the coral reefs around the Rosario Islands, in the Caribbean Sea, and the rainfall patterns in the Magdalena River watershed. From the Moderate Resolution Imaging Spectroradiometer (MODIS), this study used the water surface reflectance product (MOD09GQ) to estimate water surface reflectance as a proxy for sediment concentration and the land cover product (MCD12Q1 V51) to characterize land cover of the watershed. Rainfall was estimated by using the 3B43 V7 product from the Tropical Rainforest Measuring Mission (TRMM). For the first trimester of each year, we investigated the inter-annual temporal variation in water surface reflectance at the Rosario Islands and at the three main mouths of the Magdalena River watershed. No increasing or decreasing trends of water surface reflectance were detected for any of the sites for the study period 2001–2014 (p > 0.05) but significant correlations were detected among the trends of each site at the watershed mouths (r = 0.57–0.90, p < 0.05) and between them and the inter-annual variation in rainfall on the watershed (r = 0.63–0.67, p < 0.05). Those trimesters with above-normal water surface reflectance at the mouths and above-normal rainfall at the watershed coincided with La Niña conditions while the opposite was the case during El Niño conditions. Although, a preliminary analysis of inter-annual land cover trends found only cropland cover in the watershed to be significantly correlated with water surface reflectance at two of the watershed mouths (r = 0.58 and 0.63, p < 0.05), the validation analysis draw only a 40.7% of accuracy in this land cover classification. This requires further analysis to confirm the impact of the cropland on the water quality at the watershed outlets. Spatial analysis with MOD09GQ imagery detected the overpass of river plumes from Barbacoas Bay over the Rosario Islands waters.  相似文献   

12.
Image composites are often used for earth surface phenomena studies at regional or national level. The compromise between residual clouds and the length of compositing period is a necessary corollary to the choice of satellite optical data for monitoring earth surface phenomena dynamics. This paper introduced a methodology for estimating availability of cloud-free image composites for optical sensors with various revisiting intervals, using MODIS MOD06 L2 cloud fraction product in the period of 2000–2008. The methodology starts with downscaling of the cloud fraction product to 1 km × 1 km cloud cover binary images. The binary images are then used for the exploration of spatial and temporal characteristics of cloud dynamics, and subsequently for the simulation of cloud-free composite availability with various revisiting intervals of optical sensors. Using Canada's southern provinces as an application case, the study explored several factors important for the design of environmental monitoring system using optical sensors of earth observation, in particular, cloud dynamics and its inter-annual variability, sensors’ revisiting intervals, and cloud-free threshold for targeting composites. While the cloud images used in the analysis are at 1 km × 1 km resolution, our analysis suggests that the simulated availabilities of cloud-free image composites may also provide reasonable estimates for optical sensors with higher than 1 km × 1 km resolution, though the closer to 1 km × 1 km resolution the optical sensor, the more pertinent the application. Also, the methodology can be parameterised to different temporal period and different spatial region, depending on applications.  相似文献   

13.
Seagrass habitats in subtidal coastal waters provide a variety of ecosystem functions and services and there is an increasing need to acquire information on spatial and temporal dynamics of this resource. Here, we explored the capability of IKONOS (IKO) data of high resolution (4 m) for mapping seagrass cover [submerged aquatic vegetation (%SAV) cover] along the mid-western coast of Florida, USA. We also compared seagrass maps produced with IKO data with that obtained using the Landsat TM sensor with lower resolution (30 m). Both IKO and TM data, collected in October 2009, were preprocessed to calculate water depth invariant bands to normalize the effect of varying depth on bottom spectra recorded by the two satellite sensors and further the textural information was extracted from IKO data. Our results demonstrate that the high resolution IKO sensor produced a higher accuracy than the TM sensor in a three-class % SAV cover classification. Of note is that the OA of %SAV cover mapping at our study area created with IKO data was 5–20% higher than that from other studies published. We also examined the spatial distribution of seagrass over a spatial range of 4–240 m using the Ripley’s K function [L(d)] and IKO data that represented four different grain sizes [4 m (one IKO pixel), 8 m (2 × 2 IKO pixels), 12 m (3 × 3 IKO pixels), and 16 m (4 × 4 IKO pixels)] from moderate-dense seagrass cover along a set of six transects. The Ripley’s K metric repeatedly indicated that seagrass cover representing 4 m × 4 m pixels displayed a dispersed (or slightly dispersed) pattern over distances of <4–8 m, and a random or slightly clustered pattern of cover over 9–240 m. The spatial pattern of seagrass cover created with the three additional grain sizes (i.e., 2 × 24 m IKO pixels, 3 × 34 m IKO pixels, and 4 × 4 m IKO pixels) show a dispersed (or slightly dispersed) pattern across 4–32 m and a random or slightly clustered pattern across 33–240 m. Given the first report on using satellite observations to quantify seagrass spatial patterns at a spatial scale from 4 m to 240 m, our novel analyses of moderate-dense SAV cover utilizing Ripley’s K function illustrate how data obtained from the IKO sensor revealed seagrass spatial information that would be undetected by the TM sensor with a 30 m pixel size. Use of the seagrass classification scheme here, along with data from the IKO sensor with enhanced resolution, offers an opportunity to synoptically record seagrass cover dynamics at both small and large spatial scales.  相似文献   

14.
Soil respiration (Rs) data from 45 plots were used to estimate the spatial patterns of Rs during the peak growing seasons of winter wheat and summer maize in Julu County, North China, by combining satellite remote sensing data, field-measured data, and a support vector regression (SVR) model. The observed Rs values were well reproduced by the model at the plot scale, with a root-mean-square error (RMSE) of 0.31 μmol CO2 m−2 s−1 and a coefficient of determination (R2) of 0.73. No significant difference was detected between the prediction accuracy of the SVR model for winter wheat and summer maize. With forcing from satellite remote sensing data and gridded soil property data, we used the SVR model to predict the spatial distributions of Rs during the peak growing seasons of winter wheat and summer maize rotation croplands in Julu County. The SVR model captured the spatial variations of Rs at the county scale. The satellite-derived enhanced vegetation index was found to be the most important input used to predict Rs. Removal of this variable caused an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.42 μmol CO2 m−2 s−1. Soil properties such as soil organic carbon (SOC) content and soil bulk density (SBD) were the second most important factors. Their removal led to an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.37 μmol CO2 m−2 s−1. The SVR model performed better than multiple regression in predicting spatial variations of Rs in winter wheat and summer maize rotation croplands, as shown by the comparison of the R2 and RMSE values of the two algorithms. The spatial patterns of Rs are better captured using the SVR model than performing multiple regression, particularly for the relatively high and relatively low Rs values at the center and northeast study areas. Therefore, SVR shows promise for predicting spatial variations of Rs values on the basis of remotely sensed data and gridded soil property data at the county scale.  相似文献   

15.
Abstract

A long-term, consistent Fraction of Absorbed Photosynthetically Active Radiation (FPAR) product is necessary to study the spatial and temporal patterns of vegetation dynamics associated with climatic changes and human activities. In this study, Eurasia was selected as the study area. The relationship between FPAR and simple infrared/red ratio relationship (SR FPAR), and that between Moderate Resolution Imaging Spectroradiometer (MODIS) FPAR and a Normalised Difference Vegetation Index (NDVI) look-up table (LUT FPAR) were employed to estimate FPAR from 1982 to 2006 by different land cover types, focusing on the comparisons of spatiotemporal FPAR patterns between the two FPAR datasets. The results showed high agreement between MODIS standard FPAR and estimated FPAR in seasonal dynamics with peak values in July. The LUT FPAR was close to MODIS standard FPAR and larger than SR FPAR. The SR and LUT FPAR showed the same spatial distribution and inter-annual variation patterns and were primarily determined by land cover types. An overall increasing trend in FPAR was observed from 1982 to 2006, with reductions from 1991 to 1994 and 2000 to 2002. The inter-annual dynamics in evergreen broadleaf forests showed a decreasing trend over 25 years, while non-forest vegetation FPAR values had slow, stable growth in inter-annual variation.  相似文献   

16.
In West Africa, accurate classification of land cover and land change remains a big challenge due to the patchy and heterogeneous nature of the landscape. Limited data availability, human resources and technical capacities, further exacerbate the challenge. The result is a region that is among the more understudied areas in the world, which in turn has resulted in a lack of appropriate information required for sustainable natural resources management. The objective of this paper is to explore open source software and easy-to-implement approaches to mapping and estimation of land change that are transferrable to local institutions to increase capacity in the region, and to provide updated information on the regional land surface dynamics. To achieve these objectives, stable land cover and land change between 2001 and 2013 in the Kara River Basin in Togo and Benin were mapped by direct multitemporal classification of Landsat data by parameterization and evaluation of two machine-learning algorithms. Areas of land cover and change were estimated by application of an unbiased estimator to sample data following international guidelines. A prerequisite for all tools and methods was implementation in an open source environment, and adherence to international guidelines for reporting land surface activities. Findings include a recommendation of the Random Forests algorithm as implemented in Orfeo Toolbox, and a stratified estimation protocol − all executed in the QGIS graphical use interface. It was found that despite an estimated reforestation of 10,0727 ± 3480 ha (95% confidence interval), the combined rate of forest and savannah loss amounted to 56,271 ± 9405 ha (representing a 16% loss of the forestlands present in 2001), resulting in a rather sharp net loss of forestlands in the study area. These dynamics had not been estimated prior to this study, and the results will provide useful information for decision making pertaining to natural resources management, land management planning, and the implementation of the United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD).  相似文献   

17.
Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.  相似文献   

18.
Bracken fern is an invasive plant that presents serious environmental, ecological and economic problems around the world. An understanding of the spatial distribution of bracken fern weeds is therefore essential for providing appropriate management strategies at both local and regional scales. The aim of this study was to assess the utility of the freely available medium resolution Landsat 8 OLI sensor in the detection and mapping of bracken fern at the Cathedral Peak, South Africa. To achieve this objective, the results obtained from Landsat 8 OLI were compared with those derived using the costly, high spatial resolution WorldView-2 imagery. Since previous studies have already successfully mapped bracken fern using high spatial resolution WorldView-2 image, the comparison was done to investigate the magnitude of difference in accuracy between the two sensors in relation to their acquisition costs. To evaluate the performance of Landsat 8 OLI in discriminating bracken fern compared to that of Worldview-2, we tested the utility of (i) spectral bands; (ii) derived vegetation indices as well as (iii) the combination of spectral bands and vegetation indices based on discriminant analysis classification algorithm. After resampling the training and testing data and reclassifying several times (n = 100) based on the combined data sets, the overall accuracies for both Landsat 8 and WorldView-2 were tested for significant differences based on Mann-Whitney U test. The results showed that the integration of the spectral bands and derived vegetation indices yielded the best overall classification accuracy (80.08% and 87.80% for Landsat 8 OLI and WorldView-2 respectively). Additionally, the use of derived vegetation indices as a standalone data set produced the weakest overall accuracy results of 62.14% and 82.11% for both the Landsat 8 OLI and WorldView-2 images. There were significant differences {U (100) = 569.5, z = −10.8242, p < 0.01} between the classification accuracies derived based on Landsat OLI 8 and those derived using WorldView-2 sensor. Although there were significant differences between Landsat and WorldView-2 accuracies, the magnitude of variation (9%) between the two sensors was within an acceptable range. Therefore, the findings of this study demonstrated that the recently launched Landsat 8 OLI multispectral sensor provides valuable information that could aid in the long term continuous monitoring and formulation of effective bracken fern management with acceptable accuracies that are comparable to those obtained from the high resolution WorldView-2 commercial sensor.  相似文献   

19.
Accurate estimation of ecosystem carbon fluxes is crucial for understanding the feedbacks between the terrestrial biosphere and the atmosphere and for making climate-policy decisions. A statistical model is developed to estimate the gross primary production (GPP) of coniferous forests of northeastern USA using remotely sensed (RS) radiation (land surface temperature and near-infra red albedo) and ecosystem variables (enhanced vegetation index and global vegetation moisture index) acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. This GPP model (called R-GPP-Coni), based only on remotely sensed data, was first calibrated with GPP estimates derived from the eddy covariance flux tower of the Howland forest main tower site and then successfully transferred and validated at three other coniferous sites: the Howland forest west tower site, Duke pine forest and North Carolina loblolly pine site, which demonstrate its transferability to other coniferous ecoregions of northeastern USA. The proposed model captured the seasonal dynamics of the observed 8-day GPP successfully by explaining 84–94% of the observed variations with a root mean squared error (RMSE) ranging from 1.10 to 1.64 g C/m2/day over the 4 study sites and outperformed the primary RS-based GPP algorithm of MODIS.  相似文献   

20.
In the last two decades, a number of single-source surface energy balance (SEB) models have been proposed for mapping evapotranspiration (ET); however, there is no clear guidance on which models are preferable under different conditions. In this paper, we tested five models-Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET at high Resolution with Internalized Calibration (METRIC), Simplified Surface Energy Balance Index (S-SEBI), Surface Energy Balance System (SEBS), and operational Simplified Surface Energy Balance (SSEBop)—to identify the single-source SEB models most appropriate for use in the humid southeastern United States. ET predictions from these models were compared with measured ET at four sites (marsh, grass, and citrus surfaces) for 149 cloud-free Landsat image acquisition days between 2000 and 2010. The overall model evaluation statistics showed that SEBS generally outperformed the other models in terms of estimating daily ET from different land covers (e.g., the root mean squared error (RMSE) was 0.74 mm day−1). SSEBop was consistently the worst performing model and overestimated ET at all sites (RMSE = 1.67 mm day−1), while the other models typically fell in between SSEBop and SEBS. However, for short grass conditions, SEBAL, METRIC, and S-SEBI appear to work much better than SEBS. Overall, our study suggests that SEBS may be the best SEB model in humid regions, although it may require modifications to work better over short vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号