首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
基于土壤侵蚀控制度的黄土高原水土流失治理潜力研究   总被引:11,自引:1,他引:10  
以整个黄土高原为研究对象,首先将水土保持措施容量定义为某一区域能容纳的最大适宜水土保持措施量。根据梯田、林地和草地的适宜布设区域,在地理信息系统(GIS)软件的支持下,确定了黄土高原的水土保持措施容量。使用修正通用土壤流失方程(RUSLE),计算了最小可能土壤侵蚀模数和2010年现状土壤侵蚀模数,并将水土保持措施容量下的最小可能土壤侵蚀模数与现状土壤侵蚀模数之比定义为土壤侵蚀控制度。随后使用土壤侵蚀控制度,对黄土高原水土流失治理潜力进行了研究。结果显示:黄土高原2010年现状土壤侵蚀模数为3355 t·km-2·a-1,最小可能土壤侵蚀模数为1921 t·km-2·a-1,土壤侵蚀控制度为0.57,属于中等水平。相比于现状条件,在水土保持措施容量条件下,微度侵蚀区比例从50.48%提高至57.71%,林草覆盖率从56.74%增加至69.15%,梯田所占比例由4.36%增加到19.03%,人均粮食产量可从418 kg·a-1提高至459 kg·a-1。研究成果对于黄土高原生态文明建设具有一定的指导意义。  相似文献   

2.
地形是土壤侵蚀进程的重要控制因子,在土壤侵蚀评价中发挥着重要作用。基于地形起伏表达构建了地形指数,结合降雨侵蚀力和植被盖度等建立了基于地形指数的土壤侵蚀方程,并分析了内蒙古自治区鄂尔多斯市北部十大孔兑砒砂岩黄土区1985—2018年土壤侵蚀时空变化特征。结果表明:(1)研究区多年土壤侵蚀模数整体有下降趋势但变化差异不显著(P>0.05),多年平均侵蚀模数为22.34 t·hm-2·a-1。1985年土壤侵蚀模数最大,2000年土壤侵蚀模数最小,1985—2000年呈下降趋势,2000—2018年呈上升趋势;(2)多年平均土壤侵蚀面积为2 956.07 km2,1985年土壤侵蚀面积最大,为4 047.14 km2,占总面积比例83%;2000年土壤侵蚀面积最小,为2 153.67 km2,占比44%。研究区1985—2000年以轻度、中度侵蚀强度类型为主,2000—2018年以微度、轻度侵蚀类型为主;(3)多年土壤侵蚀空间分布格局基本一致,土壤侵蚀综合指数由西至东增加,总体上呈现为东部侵蚀大于西部的特点,母哈尔沟土壤侵蚀综合指数最大,毛卜拉孔兑最小;(4)地形指数土壤侵蚀方程与通用土壤流失方程在土壤侵蚀模数和土壤侵蚀面积估算上均无显著差异(P>0.05)。  相似文献   

3.
基于WaTEM/SEDEM模型的沂河流域土壤侵蚀产沙模拟   总被引:1,自引:0,他引:1  
基于WaTEM/SEDEM模型,结合临沂水文站和角沂水文站的输沙数据对模型进行校正和验证,分析模拟1975—2015年沂河流域侵蚀产沙的时空变化特征,并进一步研究降水、地形位和土地利用变化对流域侵蚀产沙的影响。结果表明:① 沂河流域输沙能力系数Ktc-low和Ktc-high在40 m和150 m组合下效果最优,模型在沂河流域具有较好的适用性。② 1975—2015年,沂河流域主要以侵蚀为主,微度侵蚀所占面积最大,其次是剧烈侵蚀,沉积主要分布在河谷处;流域侵蚀强度呈现先增加后减少的趋势,侵蚀模数由1975年的30.92 t·hm-2·a-1增加至1995年的49.32 t·hm-2·a-1再下降至2015年的29.60 t·hm-2·a-1;各县(区)平均侵蚀模数为沂水县>费县>沂南县>沂源县>蒙阴县>平邑县>兰山区。③ 沂河流域土壤侵蚀产沙强度的变化是降水、地形、土地利用等综合作用的结果。1975—2015年,流域降雨侵蚀力呈现先降低后升高又降低的变化趋势,各县(区)平均降雨侵蚀力为费县>兰山区>沂南县>蒙阴县>平邑县>沂水县>沂源县,降雨侵蚀力时空变化与流域侵蚀产沙强度时空变化并不完全一致;地形位等级空间分布与流域侵蚀产沙强度空间分布基本一致,侵蚀产沙的优势地形位区间是4~6级,即高程75~428 m,坡度5°~39°;耕地和林地的转化是土壤侵蚀强度转化最主要的原因,林地转化为耕地使侵蚀强度面积升高3389.97 hm2·a-1,耕地转林地则使侵蚀强度面积降低2216.65 hm2·a-1,草地与其他土地利用类型的转化对流域侵蚀强度影响较小。该研究可为区域土地利用方式调整和水土流失调控提供参考。  相似文献   

4.
为科学地认识中国东北黑土区流域土壤侵蚀特征,探讨TETIS模型在该区的适用性,本文以乌裕尔河流域为例,利用1971-1987年日径流与泥沙实测数据对TETIS模型进行了校正与验证,进而分析了流域土壤侵蚀强度特征及其与坡度、土地利用方式的关系。研究结果表明:TETIS模型在乌裕尔河流域适用性好,日径流与日输沙量的纳什效率系数在0.52~0.70之间,决定系数在0.60~0.71之间,体积误差均不超过15%。流域平均侵蚀模数为397.2 t/(km2·a),流域以微度和轻度侵蚀为主,约90%的产沙来自于坡面。平均土壤侵蚀模数随坡度的增大而增大,流域侵蚀量主要来自于0°~5°坡面。不同土地利用方式具不同的土壤侵蚀模数,耕地土壤侵蚀模数最大,达556.3 t/(km2·a)。坡度较大的耕地和植被覆盖度较低的区域是水土流失治理的重点。研究表明,TETIS模型在黑土区模拟土壤侵蚀产沙应用前景好,可为研究区制定水土保持措施提供科学依据。  相似文献   

5.
山地生态系统的土壤侵蚀和水源供给变化对评估区域生态环境质量有重要意义。基于2000-2015年四期土地利用数据,借助InVEST模型对淇河流域近16年间山地生态系统的土壤侵蚀和水源供给变化进行评估。结果表明:① 研究区主要土地利用类型为耕地、草地和林地,共占流域总面积的90%以上。近16年间淇河流域的耕地面积显著减少,草地和水域面积大幅增加,建设用地扩张明显。② 平均土壤侵蚀模数显著降低,2000年土壤侵蚀模数为154.27 t/(hm2·a),2015年减少到32.09 t/(hm2·a);强度侵蚀、极强侵蚀和剧烈侵蚀由9.03%、12.19%和25.96%分别减少到7.17%、6.36%和4.21%,微度侵蚀、轻度侵蚀和中度侵蚀由24.31%、16.96%和11.57%增加到41.89%、27.71%和12.68%;退耕还林、还草措施优化了土地利用格局,促进植被恢复,对治理土壤侵蚀起到了显著效果。③ 水源供给量整体呈现先增加后减少的趋势,2005年达到峰值(1.79亿m3)。相邻两期水源供给量增减变化不一,2000-2005年水源供给量增加的面积大于减少的面积,其水源供给的量值也呈增加趋势,水源供给能力整体增强;而2005-2010年、2010-2015年的水源供给能力随之减弱,其中,2010-2015年水源供给减少的较小;林地和草地面积的增加造成水源供给量降低,土壤水源涵养能力增强。土壤侵蚀和水源供给是山地生态脆弱性响应的重要指标,制定合理的水土保持措施对增强山区生态系统的服务能力具有重要意义。  相似文献   

6.
陕北地区退耕还林还草工程土壤保护效应的时空特征   总被引:3,自引:0,他引:3  
刘文超  刘纪远  匡文慧 《地理学报》2019,74(9):1835-1852
以中国退耕还林生态工程重点区域陕北地区作为研究区,基于耕地遥感监测数据集,分析了陕北地区2000-2013年耕地的时空变化特征;基于梯田空间分布,对RUSLE模型进行改进,模拟生成陕北地区土壤侵蚀模数栅格数据并进行精度验证;最后结合耕地变化数据集对陕北地区退耕还林(草)地及未退耕地的土壤侵蚀变化特征进行对比分析,以明确工程对全区土壤侵蚀变化的影响。结果表明,2000-2010年,陕北退耕农田内部侵蚀模数减少了22.70 t/hm 2,是退耕农田区2000年土壤侵蚀模数的47.08%。同期,陕北地区未退耕农田侵蚀模数减少了10.99 t/hm 2,占未退耕农田区域2000年土壤侵蚀模数的28.60%。从陕北全区的角度看,各种土地利用类型2000-2010年土壤侵蚀模数平均减少了14.51 t/hm 2,占2000年全区土壤侵蚀模数的41.87%。由此可见,退耕还林还草工程可以有效减少土壤侵蚀模数,达到土壤保护的作用。其中,由耕地转为林草所导致的侵蚀减少最为显著,对土壤保护的贡献作用最大。但是,2010年以后(2010-2013年)为退耕还林还草巩固时期,因此该阶段陕北地区土壤侵蚀模数和土壤侵蚀量变化较前10年显著降低。  相似文献   

7.
基于RUSLE的卧虎山水库流域土壤侵蚀特征分析   总被引:3,自引:0,他引:3  
通过RUSLE模型对卧虎山水库流域土壤侵蚀进行全面评价验证和总结。结果表明: 水库流域平均侵蚀模数为462 t/(km2·a),该数值与通过水库淤积等资料推算评估结果基本一致,表明本研究结果具有较高的可信度;水库流域年均侵蚀量达到2.6×106t,其中高于容许土壤流失量的面积为176 km2,占到流域总面积的31.51%。从不同侵蚀级别来看,占流域面积27.77%的轻度侵蚀,对流域侵蚀总量的贡献率为54.64%; 面积占比3.74%的中度及以上侵蚀,侵蚀量贡献率达到30.94%。 流域内土壤侵蚀空间差异较大,回归分析发现地形因子是导致各子流域土壤侵蚀模数差异的主要因素;就土地利用类型而言,旱地和农村居民点是流域内的主要侵蚀土地利用类型;流域内土壤侵蚀模数随着坡度增加呈现相应增大趋势,8°~25°坡度段面积比例不仅最大,而且侵蚀量占比最高,是水库流域的主要侵蚀坡度段。  相似文献   

8.
田培  贾婷惠  平耀东  许盈  王哲  刘目兴 《热带地理》2023,(11):2216-2228
揭示鄂西北土壤侵蚀时空分异特征及成因可为该区域的水土保持工作提供借鉴。基于RUSLE模型定量分析2005—2020年鄂西北土壤侵蚀时空分异特征,利用地理探测器进行土壤侵蚀时空格局的主导因素和多因子间度量交互耦合程度的定量归因研究。结果表明:1)鄂西北2005—2020年土壤侵蚀强度整体持续下降,15年间平均土壤侵蚀模数下降了16.3 t/(km2·a);整体以微度和轻度侵蚀为主(占总侵蚀面积的93%)。2)不同坡度下土壤侵蚀强度不同,8°~25°地区以中度、强烈和极强烈侵蚀为主(侵蚀占比为55.4%);>25°地区,65.6%的面积受到强烈及以上等级的高强度侵蚀。3)坡度和主要土地利用类型是土壤侵蚀的主导因子,二者共同作用对土壤侵蚀的解释力(q=0.479)均优于单因子。4)坡度>35°、高程在500~800 m、年降雨侵蚀力在4 950.55~6 378.09 MJ·mm/(hm2·h·a)且以耕地为主要土地利用类型的区域均被识别为高风险侵蚀区。  相似文献   

9.
137Cs示踪技术在黑土区农业非点源污染负荷研究中的应用   总被引:1,自引:0,他引:1  
利用137Cs核素示踪和定位监测相结合,研究松嫩平原黑土区3个旱作坡面土壤的流失厚度和流失速率,坡面土壤流失厚度1.20~5.25 mm/a,侵蚀强度1 355.0~7 558.2 t/(km2·a);近40 a来,松嫩平原黑土区年均入河(湖)农业非点源污染负荷分别为TN 1.43 t/(km2·a)、NH3-N 15.01 kg/(km2·a)、NO3-N 8.51 kg/(km2·a)TP 0.42 t/(km2·a)、PO43--P 1.85 kg/(km2·a);土壤流失氮以有机氮为主;水溶态无机氮占总氮的0.51%,水溶性磷酸盐磷占总磷的0.12%。黑土区农业非点源污染物的输出和水土流失密切相关,深入研究其输移机理及防治措施具有重要的环境意义。  相似文献   

10.
以祁连山北麓中段青海云杉林为研究对象,利用5套土壤温湿度自动监测系统对海拔2 500~3 300 m的青海云杉连续监测3 a,旨在探讨青海云杉林土壤水热的变化特征及土壤水热间的互作效应。结果表明:(1)7:00~19:00,土壤温度整体上呈升高趋势,8:00土壤均温最低,为1.03 ℃,18:00土壤均温最高,为1.32 ℃;土壤湿度的变化幅度较小,且差异不显著(P>0.05)。(2)冷期(1~4月、11~12月)、暖期(5~10月),各占全年的50%;8月前随月份增大土壤温湿度增大,月份增大1月,土壤均温增大2.21 ℃,湿度增大0.021 m3·m-3,8月后随月份增大逐渐减小,月份增大1月,土壤均温减小3.12 ℃,湿度减小0.017 m3·m-3。(3)土壤温度与海拔之间有负相关关系(R2=0.81,P<0.05);土壤湿度与海拔之间存在二项式相关关系(R2=0.95,P <0.05)。(4)土壤温度与土层深度间呈负相关关系(P <0.05),而土壤湿度与土层深度呈线性正相关关系(P <0.05),土层每增加一层,土壤均温减小0.142 ℃,度约增加0.009 m3·m-3。(5)青海云杉林土壤温度和湿度间呈显著线性负相关关系(P <0.05)。  相似文献   

11.
周颖  曹月娥  杨建军  刘巍  吴芳芳 《中国沙漠》2016,36(5):1265-1270
以准噶尔盆地东部露天矿区为研究区,基于GIS技术和土壤风蚀理论,结合研究区自然环境现状,选取植被覆盖度、土地利用类型、土壤可蚀性指数(K值)、地形起伏度为土壤风蚀危险度评价因子,建立土壤风蚀危险度模型,对研究区土壤风蚀危险度进行评价分析。结果表明:研究区土壤风蚀无险型区域面积28.99 km2(0.13%),轻险型区域面积为2 100.66 km2(9.42%),危险型区域面积为5 066.56 km2(22.72%),强险型区域面积为14 593.12 km2(65.44%),极险型区域面积为646.7 km2(2.29%)。在各个因子的影响下,研究区的风蚀危险度极高,强险型为研究区内最主要的等级程度。研究区土壤风蚀危险度从南向北危险度有增加的趋势,且成片状分布,与实际情况相吻合,说明基于GIS技术的土壤风蚀危险度评价可宏观地揭示新疆准东地区土壤风蚀危险度空间格局分异特征。  相似文献   

12.
将泥沙输移能力公式与USLE公式相结合,建立了一个简化的分布式小流域产沙模型,并将其应用于川中丘陵区小流域的土壤侵蚀与泥沙输移的空间分布模拟。得到的主要结论:1.该模型适用于川中丘陵区小流域产沙的模拟;2.魏城河流域1980—1987年8 a平均土壤侵蚀量为16.8×104t,侵蚀模数为675.8 t/(km2.a),模拟得到的输沙模数为238.6 t/(km2.a),泥沙输移比为0.35;3.魏城河流域主要以微度侵蚀为主,占到全流域总面积的68%,强度侵蚀占流域面积的1%,主要分布在坡度较陡的流域边缘地带;4.相对其他因子,降雨与坡度对该流域侵蚀产沙的影响更为突出。  相似文献   

13.
The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system (GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation (RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t?km-2?a-1, the minimum possible soil erosion modulus was 1921 t?km-2?a-1, and the soil erosion control degree was 0.57 (medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t?km-2?a-1 increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg?a-1 to 459 kg?a-1 under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.  相似文献   

14.
选取黑龙江省鹤山农场面积为0.91 km2的典型黑土区的坡耕地作为研究样地。按横纵100 m间隔共采集101个样点,运用地理信息系统和地统计学相结合的方法研究分析0~15 cm土层有机质空间变异及其与土壤侵蚀的关系。结果表明:位于典型黑土区样地的有机质含量集中在3%~5%范围内,均值为4.13%,高于黑龙江省的有机质平均水平。有机质含量空间变异明显,且主要受土壤侵蚀的影响:高侵蚀区对应低有机质区,中度侵蚀区对应中等有机质区,沉积区对应高有机质区。顺坡种植平均坡度2.2°时,每侵蚀1 000 t/km2土壤,有机质含量降低0.8%。土壤有机质空间变异可采用球状模型表达,自相关明显,进一步表明土壤侵蚀导致的再分布。对比分析确定200 m采样间距能够能准确表达该区表层有机质含量的空间特征,为精准施肥提供了采样依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号