首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
采用二次回归通用旋转组合设计方法,对沙地玉米的水肥因子进行了量化试验研究。结果表明,试验条件下沙地农田当土壤相对含水量保持在67.2%,施用尿素52.5 g·m-2和施用磷肥36.7g·m-2时,可以获得1.32 kg·m-2的最高产量。影响玉米产量形成的敏感因子首先是氮肥施用量,其次是土壤相对含水量,而磷肥施用量对玉米增产效果不明显。玉米的产量(Y)与土壤相对含水量因子(X1)、氮肥施用量因子(X2)和磷肥施用量因子(X3)的关系为:Y=5.16+0.151x1+0.284x2-0.182x3+0.199x1x2+0.403x1x3-0.215x2x3-0.193x12-0.415x22-0.002x32。  相似文献   

2.
明确不同生态系统土壤碳排放规律及其影响因素对准确评估全球碳循环具有重要意义。为揭示干旱区典型盐湖沿岸土壤呼吸(Rs)、土壤呼吸温度敏感系数(Q10)变化特征及其影响因素,以新疆干旱区达坂城盐湖和巴里坤湖沿岸土壤为研究对象,在2015—2016年5~10月利用LI-8100土壤碳通量自动测量系统对盐湖沿岸土壤呼吸速率进行测定,分析了土壤呼吸季节性变化特征及其影响因子。结果表明,干旱区盐湖土壤呼吸变幅较大(0.07~11.59 μmol·m-2·s-1),平均值为2.45 μmol·m-2·s-1,7月土壤呼吸速率最高为4.69 μmol·m-2·s-1,10月最低(1.01 μmol·m-2·s-1);土壤CO2累积排放量为9.30 g·m-2·d-1,7月累积排放量最大为17.82 g·m-2·d-1Q10呈“降低—增加—降低”趋势,6月最低(2.25)9月最高(3.52),平均值为2.79。干旱区盐湖沿岸土壤呼吸受土壤有机碳(SOC)、5 cm土壤温度(ST5)、土壤含水量(SM)和土壤盐分(Salt)的共同影响,单因素模型模拟可解释土壤呼吸速率变化的41.7%~75.7%(R2=0.417~0.757,P<0.05),多因子综合模型拟合结果最佳Rs=0.001×SOC+0.039×SM-0.534×Salt-0.116×ST5+5.06(R2=0.804,P=0.05),且均表明盐分是影响干旱区盐湖沿岸土壤呼吸速率的主要因子。因此,在考虑陆地生态系统碳收支和碳循环时不能忽略干旱区盐湖沿岸土壤碳过程,以及盐分对盐湖生态系统碳排放的影响。  相似文献   

3.
通过鉴定二次回归旋转正交组合设计试验,获得沙地春玉米拔节期叶片水势(Y)与土壤相对含水量(X1)和尿素施用量(X2)之间的关系方程:Y=-1.35+0.06X1-0.02X2+0.05X1X2+0.05X12+0.09X22。玉米拔节期的叶片水势受土壤含水量的影响远大于受施肥量的影响;当土壤相对含水量为74%、尿素施用为59g·m-2时,玉米拔节期的叶片水势最高。  相似文献   

4.
砾石床面的空气动力学粗糙度   总被引:12,自引:7,他引:5  
通过砾石床面的空气动力学粗糙度(Z0)的风洞实验研究,结果表明,砾石床面的空气动力学粗糙度(Z0)与砾石粒径、砾石覆盖度和自由风速有关,Bagnold的1/30定律和其它有关空气动力学粗糙度与粗糙元高度的固定比例对砾石床面都不适用。在各种一定砾石覆盖度条件下,砾石床面的Z0随自由风速的增加而呈指数衰减。在各种一定自由风速条件下,Z0随砾石覆盖度C的变化遵循二次曲线:Z0=F1+F2C+F3C1.5+F4C2,砾石覆盖度为40%~75%时,Z0达到最大值。建立了包含自由风速和砾石覆盖度两个因子的Z0的双因子综合模型。  相似文献   

5.
小麦玉米田耕作模式的防风蚀效果   总被引:2,自引:0,他引:2  
通过风洞实验,在5个风速下对6种耕作方式下农田土壤风蚀速率、0~20 cm风沙流结构进行了模拟研究。结果表明:保护性耕作土壤风蚀速率较传统耕作平均降低20%~40%;保护性耕作和传统耕作条件下土壤风蚀速率均随风速的增大呈幂函数递增,但在传统耕作条件下递增较快;风速14 m·s-1是荒漠绿洲农田土壤风蚀加剧转折点,当风速>14 m·s-1时保护性耕作下风蚀速率较传统耕作明显降低;0~20 cm内,传统耕作和保护性耕作下输沙率与高度分别呈线性和指数关系,保护性耕作下0~4 cm输沙量和输沙量百分比(Q0~4/Q0~20)均低于传统耕作。  相似文献   

6.
以黄土高原典型草原为对象,采用静态箱-红外分析仪联用法进行野外原位试验,研究氮添加对生态系统CO2通量的影响。设置6个氮添加水平,分别为N0(0)、N1(1.15 g·m-2·a-1)、N2(2.3 g·m-2·a-1)、N3(4.6 g·m-2·a-1)、N4(9.2 g·m-2·a-1)和N5(13.8 g·m-2·a-1),氮素类型为尿素((NH22CO)。结果表明:氮添加处理没有改变生态系统碳交换的季节动态趋势,但是增加了生态系统净碳交换能力(NEE)、生态系统呼吸(ER)和总生态系统生产力(GEP)的峰值。N2、N3、N4、N5处理的NEE生长季绝对累积量分别比对照增加62%、45%、72%和48%;ER累积量分别增加66%、69%、78%、70%;GEP累积量分别增加65%、66%、77%、68%。氮添加处理增强了黄土高原典型草原植物生长季的碳汇功能。0~10 cm层土壤温度和湿度是影响黄土高原典型草原生态系统净碳交换的重要因素。  相似文献   

7.
以河西走廊典型的荒漠绿洲新垦农田为研究对象,设置9个施肥处理(高量有机肥,M3;高量氮磷肥,NP3;低量氮磷肥+高量有机肥,NP1M3;低量氮磷钾肥,NPK1;中量氮磷钾肥,NPK2;高量氮磷钾肥,NPK3;低量氮磷钾肥+高量有机肥,NPK1M3;中量氮磷钾肥+中量有机肥,NPK2M2;高量氮磷钾肥+低量有机肥,NPK3M1),于2019—2020年7—8月采用LI-COR 8100对玉米农田土壤呼吸进行观测,分析土壤呼吸的变化、日动态及其主要影响因素。结果表明:(1)不同施肥处理,土壤呼吸速率M3>NP3>NPK1M3>NPK3M1>NPK2M2>NP1M3>NPK2>NPK3>NPK1,单施有机肥能显著提高土壤呼吸速率,较其他处理增长22.1%—41.4%。(2)不同施肥措施土壤呼吸日变化呈单峰曲线,峰值出现在13:00—16:00,土壤呼吸日变化主要受土壤温度变化的影响。(3)土壤温度和土壤湿度分别解释了土壤呼吸变化的24.2%—44.8%和7.7%—36.4%,土壤呼吸与土壤温度显著正相关,而与土壤湿度无显著相关性,不同施肥处理土壤呼吸温度敏感性系数Q10值1.419—1.600。(4)土壤呼吸与有机质、总氮、总碳、碱解氮存在显著正相关关系,施用有机肥使土壤有机质、总氮、总碳、碱解氮分别提升188.9%、80.5%、79.3%、147.0%,进而促进土壤呼吸,土壤呼吸与玉米产量无显著关系。不同的施肥措施会对土壤质量和土壤呼吸产生不同影响,有机肥和氮磷钾化肥的平衡施用,能够在提升土壤质量的同时减少碳排放,可在生产实践中采用。  相似文献   

8.
巴丹吉林沙漠拐子湖地表辐射与能量平衡特征   总被引:3,自引:3,他引:0  
利用2013年7月、10月和2014年1月、4月巴丹吉林沙漠北缘拐子湖流动沙地地表辐射、土壤热通量、土壤温湿度和湍流通量等观测资料,分析了拐子湖地区地表辐射收支和能量通量在不同季节条件下的日变化特征及能量分配和闭合状况。结果表明:地表辐射各分量和能量平衡分量的月平均日变化结果整体均表现为标准的单峰型日循环形态,受不同季节影响,日变化曲线存在显著的季节变化差异,各分量均呈7月最大、1月最小、4月大于10月, 1月和7月的Rs↓Rs↑Rl↑Rl↓Rn日均值依次为98.9 W·m-2和614.6 W·m-2、34.6 W·m-2和87.3 W·m-2、276.9 W·m-2和494.2 W·m-2、214.8 W·m-2和385.0 W·m-2、0.4 W·m-2和128.7 W·m-2。与塔中、肖塘等地相比,该区域具有相对较高的地表反照率,整体呈冬季高夏季低,年均0.34。1月和7月的HLEG0日均值依次为4.7 W·m-2和78.8 W·m-2、0.3 W·m-2和20.3 W·m-2、2.9 W·m-2和35.0 W·m-2。从能量分配来看,研究区干旱的气候和极低的植被覆盖造成了各季节全天潜热通量占净辐射份额始终较小,白天以感热为能量的主要消耗形式,土壤热通量次之。此外,Rn于正午达到日峰值后逐渐减小,受辐射强迫升温的地面以感热形式对空气的热量输送却不断持续,而促使H/Rn日间始终保持明显的增长趋势。  相似文献   

9.
黑河中游不同土地覆被类型土壤呼吸及对水热因子的响应   总被引:1,自引:0,他引:1  
以黑河中游6种典型土地覆被类型(百年灌溉农田、新垦灌溉农田、人工杨树林、人工樟子松林、人工梭梭灌木林和天然荒漠草地)为研究对象,对土壤呼吸及其对土壤含水量和土壤温度的响应进行测定。结果表明:灌溉农田的土壤呼吸速率显著大于人工樟子松林地和杨树林地,人工林地显著大于荒漠草地和梭梭灌木林地。6种土地覆被类型土壤呼吸速率与土壤温度显著正相关性,Q10值1.14~1.31,表明该地区土壤呼吸速率对土壤温度的敏感性低于世界平均水平;土壤呼吸速率与土壤含水量呈显著的指数关系。这表明6种土地覆被类型的土壤呼吸特征存在显著差异,且不同土地覆被类型的土壤呼吸特征与水热因子关系密切,以人类活动为主导的土地覆被变化深刻影响着荒漠绿洲生态系统水土气生的相互作用。  相似文献   

10.
水分是干旱区生态过程中主要限制因子,降水可通过改变土壤的干湿状况直接影响土壤的生态过程,继而引起土壤碳库的变化。生物土壤结皮作为干旱区主要的地表覆盖物,其自身不但可以进行呼吸作用,还能充分利用有限的水分通过光合作用固碳,改变土壤圈与大气圈之间的碳交换通量。通过模拟0、2、5、8、15 mm降雨,利用红外气体分析仪,对腾格里沙漠东南缘人工固沙植被区主要的生物土壤结皮覆盖土壤净CO2通量进行了原位测定,探讨生物土壤结皮覆盖土壤CO2释放和光合固定CO2(吸收)共同作用下的土壤净CO2通量对模降雨的响应特征。结果表明:(1)降雨会迅速激发生物土壤结皮覆盖土壤CO2释放,降雨激发CO2释放速率和有效时间取决于降雨量,降雨量越高,激发程度越低,激增的生物土壤结皮覆盖土壤CO2释放(源)效应有效时间随降雨量的增加而延长;降雨激发的土壤碳释放总量随着降雨量的增加显著增加,且藓类结皮覆盖土壤碳释放总量显著高于藻类结皮(P<0.05)。(2)降雨引起生物土壤结皮覆盖土壤CO2吸收速率在初期呈单峰变化,后逐渐回归到降雨前的水平,随降雨量的增加,CO2吸收的效应的时间越长,峰值越高;降雨量越高,生物土壤结皮光合碳固定量越多,当降雨量增加到15 mm时,藻类结皮光合碳固定量显著低于8 mm时的碳固定量;降雨量<5 mm时,藓类结皮光合碳固定量显著低于藻类结皮(P<0.05),≥5 mm时,藓类结皮光合碳固定量显著高于藻类结皮(P<0.05)。(3)干旱荒漠地区生物土壤结皮覆盖土壤,在无降雨的干旱期表现为较低水平的净碳排放效应,不同程度降雨的初期阶段都有短暂的增加土壤碳的汇效应,且碳汇效应的时间随降雨量的增加而延长;适度的降雨会降低长期干旱藻类结皮覆盖土壤向大气的碳排放量,而过高或过低的降雨都会不同程度地增加藻类结皮覆盖土壤向大气的碳排放,降低土壤碳的储量。不论降雨量大小,降雨都会增加藓类结皮覆盖土壤更多碳向大气排放,但随着降雨量的增加,源效应逐渐减弱。降雨量≤8 mm时,藓类结皮覆盖土壤净碳排放总量显著高于藻类结皮(P<0.05),当降雨量>8 mm时,藓类结皮覆盖土壤净碳排放量显著低于藻类结皮覆盖土壤(P<0.05)。因此,干旱区在估算生物土壤结皮覆盖土壤与大气碳交换对降雨的响应规律时,应该充分考虑降雨量大小对生物土壤结皮碳固定量和土壤碳释放组分的效应,明确降雨事件大小对不同类型生物土壤结皮覆盖土壤与大气之间碳交换的作用。  相似文献   

11.
In semi-arid areas of China, gravel and sand mulch is a farming technique with a long history. In this study, a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities. We found that after long term gravel-sand mulch, compared with bare ground, soil organic matter, alkali nitrogen, conductivity decreased, while pH and soil moisture increased. Urease, saccharase and catalase decreased with increased mulch thickness, while alkaline phosphatase was reversed. The results of Illumina MiSeq sequencing shows that after gravel-sand mulch, the bacterial and fungal community structure was different from bare land, and the diversity was reduced. Compared with bare land, the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness, and Actinobacteria was opposite. Also, at the fungal genus level, Fusarium abundance was significantly reduced, and Remersonia was significantly increased, compared with bare land. Redundancy analysis (RDA) revealed that soil environmental factors were important drivers of bacterial community changes. Overall, this study revealed some of the reasons for soil degradation after long term gravel-sand mulch. Therefore, it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality.  相似文献   

12.
砂田退化对土壤温度和蒸发影响的模拟研究   总被引:7,自引:2,他引:5  
根据砂田不同耕作年份实地取样,并进行粒径分析,结果表明,砂层中混入的土含量随着砂田耕作年限增加而逐步增加;参照实地取样后粒径分析,以砂层混入土的不同重量百分比梯度设置处理T1-5%、T2-10%、T3-20%、T4-25%、T5-30%、T6-40%,并设对照CK1(纯砂砾覆盖)和CK2(无覆盖裸地),进行温度变化和蒸发效应的模拟研究。结果表明,5 cm、10 cm的土壤温度在8:00和20:00均随着退化程度的加重而降低,而在中午则呈横置S状;与对照纯砂砾覆盖CK1相比日高温延时性随退化程度加重而逐步减弱,日积温减小且昼夜温差增大;蒸发强度随着砂田退化程度的加重而逐渐增强,无覆盖处理蒸发量约是纯砂砾覆盖蒸发量的3倍,而严重退化的处理T5 、T6分别是纯砾石覆盖的2倍,即严重退化砂田年蒸发量要比CK1多110 mm。  相似文献   

13.
砂田西瓜不同粒径砂砾石覆盖的水分效应研究   总被引:29,自引:8,他引:21  
为分析不同粒径砂砾石对砂田西瓜蒸散量和土壤蒸发的影响,2004年在位于黄土高原西北部的皋兰县境内进行了不同粒径砂砾石覆盖的水分效应研究,结果证明砂砾石粒径大小对砂田西瓜蒸散量和土壤蒸发有显著影响,粒径2~5mm覆盖处理的蒸散量显著低于粒径5~20mm和20~60mm处理,但与不覆砂的对照没有显著差异。粒径愈大,砂田土壤蒸发愈多,土壤蒸发在西瓜田总蒸散中占的比例愈高。覆砂能够有效减少土壤蒸发,未覆砂处理全生育期土壤蒸发耗水占西瓜蒸散的40.7%,而覆砂处理仅占总蒸散的17.8%~25%。西瓜田覆砂加覆膜,土壤蒸发比不覆盖田减少78~93.7mm,比仅覆砂不覆膜田减少16.9~26.3mm。不同粒径砂砾石处理之间的产量差异不显著,但水分生产率有显著差异,2~5mm粒径砂砾石覆盖处理的水分生产率显著高于20~60mm粒径处理。但砂砾石粒径减小,砂田西瓜的含糖量降低。研究结果还证明,西瓜田覆砂能有效地提高其产量,含糖量和水分生产率,适合砂田覆盖的砂砾石粒径以5~20mm为宜。  相似文献   

14.
耿元波  罗光强 《地理学报》2010,65(9):1058-1068
利用静态暗箱-气相色谱法在植物生长旺季测算了内蒙古锡林河流域羊草草原的土壤微生物呼吸、土壤呼吸和生态系统呼吸。地温和水分是植物生长旺季呼吸最重要的影响因素。地温在水分条件适宜的情况下可以解释CO2通量的部分变化(R2 = 0.376~0.655)。土壤水分含量也可以解释土壤呼吸和生态系统呼吸的部分变化(R2 = 0.314~0.583),但基本不能解释土壤微生物呼吸的变化(R2 = 0.063)。即使在较高温度下,较低的土壤水分含量(≤ 5%) 也会显著的抑制CO2排放。长期干旱后降雨使CO2通量在高温下迅速增大。基于5 cm地温和0~10 cm土壤水分含量的双变量模型可以解释CO2通量约70%的变化。观测期间,土壤呼吸占生态系统呼吸的比例介于47.3%~72.4%之间,平均为59.4%;根呼吸占土壤呼吸的比例介于11.7%~51.7%之间,平均为20.5%。由于植物体去除引起的土壤水分含量上升可能使我们对土壤呼吸占生态系统呼吸比例的估计略微偏高,根呼吸占土壤呼吸的比例略微偏低。  相似文献   

15.
We investigated soil respiration (Rs) dynamics and influencing factors under different nitrogen (N) addition levels (0, 2, 4, 8, 16, 32 g m-2 yr-1) on typical grassland plots in Inner Mongolia. We measured soil respiration, temperature, moisture and nutrients. We found that N addition did not change dynamic characteristics of Rs; daily and seasonal dynamics followed a single peak curve. N addition reduced Rs during the growing season. Rs under N2, N4, N8, N16 and N32 treatments decreased by 24.00%, 21.93%, 23.49%, 30.78% and 28.20% in the growing season, respectively, compared to the N0 treatment. However, Rs in the non-growing season was not different across treatments. Rs was significantly positively correlated with soil temperature and moisture and these two factors accounted for 72%-97% and 74%-82% of variation in Rs, respectively. The soil respiration temperature sensitivity (Q10) was between 2.27 and 4.16 and N addition reduced Q10 except in the N8 treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号