首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dove Basin, a small oceanic domain located within the southern Scotia Sea, evidences a complex tectonic evolution linked to the development of the Scotia Arc. The basin also straddles the junction between the main Southern Ocean water masses: the Antarctic Circumpolar Current (ACC), the Southeast Pacific Deep Water (SPDW) and the Weddell Sea Deep Water (WSDW). Analysis of multichannel seismic reflection profiles, together with swath bathymetry data, reveals the main structure and sediment distribution of the basin, allowing a reconstruction of the tectonostratigraphic evolution of the basin and assessment of the main bottom water flows that influenced its depositional development. Sediment dispersed in the basin was largely influenced by gravity‐driven transport from adjacent continental margins, later modified by deep bottom currents. Sediments derived from melting icebergs and extensive ice sheets also contributed to a fraction of the basin deposits. We identify four stages in the basin evolution which – based on regional age assumptions – took place during the early Miocene, middle Miocene, late Miocene–early Pliocene and late Pliocene–Quaternary. The onsets of the ACC flow in Dove Basin during the early Miocene, the WSDW flow during the middle Miocene, and the SPDW during the late Miocene were influenced by tectonic events that facilitated the opening of new oceanic gateways in the region. The analysis of Dove Basin reveals that tectonics is a primary factor influencing its sedimentary stacking patterns, the structural development of new oceanic gateways permitting the inception of deep‐water flows that have since controlled the sedimentary processes.  相似文献   

2.
The North Sea Basin contains an almost complete record of Cenozoic sedimentation, separated by clear regional unconformities. The changes in sediment characteristics, rate and source, and expression of the unconformities reflect the tectonic, eustatic and climatic changes that the North Sea and its margins have undergone. While the North Sea has been mapped locally, we present the first regional mapping of the Cenozoic sedimentary strata. Our study provides a new regional sub‐division of the main seismic units in the North Sea together with maps of depocentres, influx direction and source areas. Our study provides a regional synthesis of sedimentation based on a comprehensive interpretation of a regionally covering reflection seismic data set. We relate observations of sediment characteristics and unconformities to the geological evolution. The timing, regional expression and stratigraphic characteristics of many unconformities indicate that they were generated by eustatic sea‐level fall, often in conjunction with other processes. Early Cenozoic unconformities, however, relate to tectonism associated with the opening of the North Atlantic. From observation on a regional scale, we infer that the sediment influx into the North Sea during the Cenozoic is more complex than previously suggested clockwise rotation from early northwestern to late southern sources. The Shetland Platform supplied sediment continuously, although at varying rates, until the latest Cenozoic. Sedimentation around Norway changed from early Cenozoic influx from the southwestern margin, to almost exclusively from the southern margin in the Oligocene and from all of southern Norway in the latest Cenozoic. Thick Eocene deposits in the Central Graben are sourced mainly from a western and a likely southern source, indicating that prominent influx from the south did not only occur from the mid‐Miocene onwards. We infer a new age for the increased progradational sediment influx in the Pleistocene of 2.5 Ma, coeval with Fennoscandian glaciation.  相似文献   

3.
The Austral Basin (or Magallanes Basin) in southern Argentina is situated in a highly active tectonic zone. The openings of the South Atlantic and the Drake Passage to the east and south, active subduction in the west, and the related rise of the Andes have massively influenced the evolution of this area. To better understand the impacts of these tectonic events on basin formation to its present‐day structure we analysed 2D seismic reflection data covering about 95 000 km² on‐ and 115 000 km² offshore (Austral ‘Marina’ and Malvinas Basin). A total of 10 seismic horizons, representing nine syn‐ and post‐ rift sequences, were mapped and tied to well data to analyse the evolution of sedimentary supply and depocenter migration through time. 1D well backstripping across the study area confirms three main tectonic stages, containing (i) the break‐up phase forming basement graben systems and the evolution of the Late Jurassic – Early Cretaceous ancient backarc Austral/Rocas Verdes Basin (RVB), (ii) the inversion of the backarc marginal basin and the development of the foreland Austral Basin and (iii) the recent foreland Austral Basin. Synrift sedimentation did not exceed the creation of accommodation space, leading to a deepening of the basin. During the Early Cretaceous a first impulse of compression due to Andes uplift caused rise also of parts of the basin. Controlling factors for the subsequent tectonic development are subduction, balanced phases of sedimentation, accumulation and erosion as well as enhanced sediment supply from the rising Andes. Further phases of rock uplift might be triggered by cancelling deflection of the plate and slab window subduction, coupled with volcanic activity. Calculations of sediment accumulation rates reflect the different regional tectonic stages, and also show that the Malvinas Basin acted as a sediment catchment after the filling of the Austral Basin since the Late Miocene. However, although the Austral and Malvinas Basin are neighbouring basin systems that are sedimentary coupled in younger times, their earlier sedimentary and tectonic development was decoupled by the Rio Chico basement high. Thereby, the Austral Basin was affected by tectonic impacts of the Andes orogenesis, while the Malvinas Basin was rather affected by the opening of the South Atlantic.  相似文献   

4.
Tectonic evolution of the Alboran Sea basin   总被引:6,自引:0,他引:6  
The Alboran Sea is an extensional basin of Neogene age that is surrounded by highly arcuate thrust belts. Multichannel seismic (MCS) reflection profile data suggest the basin has a complex tectonic fabric that includes extensional, compressional and strike-slip structures. The early Miocene history appears to be dominated by graben formation with border faults that are in large part contemporaneous with thrust movements in the external zones of the Betic and Rif mountains. Extension appears to have continued into the late Miocene although the main movements were probably completed by the time of the Messinian ‘salinity crisis’. The Pliocene and younger history of the basin is dominated by infilling of the Messinian topography, gentle subsidence, and extensional, compressional and strike-slip movements. There is evidence from the sea-floor morphology and seismicity patterns that the basin is actively deforming in response to present-day plate motions. Backstripping of well data in the basin margin suggests that the initial extensional event was accompanied by crustal and lithospheric thinning. The depth to Moho inferred from backstripping is greater than the depth expected based on seismic and gravity modelling, suggesting that backstripping underestimates the true amount of thinning. One explanation is that some of the thinning occurred while the crust was above sea level, perhaps as a result of either crustal thickening, or a period of lithospheric heating and thinning, prior to rifting. We found that a model with a ‘normal’ crustal thickness of 31.2 km, a lithospheric thickness of 50 km, and β= 1.4 predicts 0.8 km of initial uplift. These parameters fit the well subsidence data and bring the backstripped Moho into better agreement with the seismic and gravity Moho. The origin of such a thin lithosphere is not constrained by the data, but we believe that it may be a result of the detachment of a cold lithospheric ‘root’ that formed during pre-Neogene collisional orogeny in the region.  相似文献   

5.
Seismic and stratigraphic data of the inland Volterra Basin and of the Tuscan Shelf (Northern Tyrrhenian Sea) have been analysed to determine the tectono-sedimentary evolution of this part of the Northern Apennines from the early Miocene (about 20 Ma) to the present. The area is a good example for better understanding the evolution of postcollisional related basins. The study area is characterized by a series of sedimentary basins separated by tectonic ridges. Similar environmental conditions existed both onshore and offshore as indicated by the occurrence of similar seismic units. The units are separated by major unconformities. The cross-sectional geometries of the deposits of these basins, as defined through seismic reflection profiles, change in a quasi-regular manner through time and space. Early stages (late Burdigalian to early Tortonian) of evolution of the basins are marked by either flat-lying deposits, quasi-uniform in thickness, probably remnants of originally wider and shallow settings, or, in places, by relatively small bowl-shaped basins. The latter may have been strongly affected by the pre-existing topography and tectonics, as they developed at or near the leading edges of pre-Neogene substrate thrusts. These early deposits represent sedimentation during a transitional period from the end of compressional tectonics to the start of an extensional phase and represent a pre-narrow rift stage of evolution of the region. The subsequent stage of tectonic evolution (late Tortonian to early Messinian), where preserved, is recorded by fault-bounded triangular-shaped basins interpreted as half-grabens. This is one of the periods of major development of narrow rifts in the area. The following stage (late Messinian to Early Pliocene) is marked by variable types of basins, showing wide and deep bowl-shaped geometries persistent in the offshore, whereas inshore (Volterra Basin) they alternate with half-graben, synrift deposits. This period thus represents a transitional stage where part of the system is still affected by synrift sedimentation and part is developing into incipient post-rift conditions. This stage was followed in early to middle Pliocene times by wide bowl-shaped to blanket-type deposits both in offshore and in inshore areas, indicating regional post-rifting conditions. The pre-, syn- and post-rift stages have followed each other through time and space, starting first in the westernmost offshore area and shifting later toward the east, inshore.  相似文献   

6.
Abstract The Amadeus Basin, a broad intracratonic depression (800 times 300 km) in central Australia, contains a complex Late Proterozoic to mid-Palaeozoic depositional succession which locally reaches 14 km in thickness. The application of sequence stratigraphy to this succession has provided an effective framework in which to evaluate its evolution. Analysis of major depositional sequences shows that the Amadeus Basin evolved in three stages. Stage 1 began at about 900 Myr with extensional thinning of the crust and formation of half-grabens. Thermal recovery following extension was well advanced when a second less intense crustal extension (stage 2) occurred towards the end of the Late Proterozoic. Stage 2 thermal recovery was followed by a major compressional event (stage 3) in which major southward-directed thrust sheets caused progressive downward flexing of the northern margin of the basin, and sediment was shed from the thrust sheets into the downwarps forming a foreland basin. This event shortened the basin by 50–100 km and effectively concluded sedimentation. The two stages of crustal extension and thermal recovery produced large-scale apparent sea-level effects upon which eustatic sea-level cycles are superimposed. Since the style of sedimentation and major sequence boundaries were controlled to a large degree by basin dynamics, depositional patterns within the Amadeus and associated basin are, to a large degree, predictable. This suggests that an understanding of major variables associated with basin dynamics and their relationship to depositional sequences may allow the development of generalized depositional models on a basinal scale. The Amadeus Basin is only one of a number of broad, shallow, intracratonic depressions that appeared on the Australian craton during the Late Proterozoic. The development of these basins almost certainly relates to the breakup of a Proterozoic supercontinent and in large part, basin dynamics appears to be tied to this global tectonic event. Onlap and apparent sea-level curves derived from the sequence analysis appear to be composite curves resulting from both basin dynamics and eustatic sea-level effects. It thus appears likely that sequence stratigraphy could be used as a basis for inter-regional correlation; a possibility that has considerable significance in Archaean and Proterozoic basins.  相似文献   

7.
Shell-Agip 35/13–1 well drilled 2445 m of Tertiary sediments in the Main Porcupine Basin situated offshore west of Ireland. Early Tertiary sediments and microfossils indicate a major cycle from deep-sea to marginal marine and terrestrial palaeoenvironments returning to deep water. By means of seismic and lithostratigraphy and petrophysical logs, three deltaic cycles can be distinguished within this major cycle. The microfaunal zonation indicates that these cycles are of late Palaeocene, early Eocene and mid/late Eocene age and, therefore, correlate broadly with the Thanet Cycle, London Clay Cycle and the Bracklesham Cycles of the Anglo-French type sections, although they are up to an order of magnitude thicker due to rapid basin subsidence. Three major unconformities can be distinguished together with a disconformity that becomes an unconformity in the North Porcupine Basin. These surfaces are associated with both local and regional tectonic and igneous events. Detailed microfossil and lithological analyses across the major unconformities allows a reasonable matching with the global sea-level curve and recognition of the major and medium sequence boundaries. Discrepancies during the late Eocene may relate to local faulting. The pattern of sedimentation reflects the restriction of North Atlantic circulation and the tendency to euxinic bottom conditions during the early Palaeogene. In the middle Thanetian these conditions invaded the shelf, an event recorded elsewhere in NW Europe. Discontinuous seismic reflectors indicate ‘chaotic’ sedimentation connected with more vigorous circulation and erosion in the early Oligocene. This was followed by a change to parallel bedded contourites and drifts after the cutting of the early Miocene unconformity. The study reveals the complex interplay of eustatic and oceanographic change with local and regional tectonics in the development of the basin.  相似文献   

8.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

9.
Pliocene–Quaternary basins of the Ionian islands evolved in a complex tectonic setting that evolved from a mid to late Cenozoic compressional zone of the northern external Hellenides to the rapidly extending Pliocene–Quaternary basins of the Peloponnese. The northern limit of the Hellenic Trench marks the junction of these two tectonic regimes. A foreland-propagating fold and thrust system in the northern external Hellenides segmented the former Miocene continental margin basin in Zakynthos and permitted diapiric intrusion of Triassic gypsum along thrust ramps. Further inboard, coeval extensional basins developed, with increasing rates of subsidence from the Pliocene to Quaternary, resulting in four principal types of sedimentation: (1) condensed shelf-sedimentation on the flanks of rising anticlines; (2) coarse-grained sedimentation in restricted basins adjacent to evaporitic diapirs rising along thrust ramps; (3) larger basins between fold zones were filled by extrabasinal, prodeltaic mud and sand from the proto-Acheloos river; (4) margins of subsiding Quaternary basins were supplied at sea-level highstands by distal deltaic muds and at lowstands by locally derived coarse clastic sediment.  相似文献   

10.
Swath bathymetry, single‐channel seismic profiling, gravity and box coring, 210Pb down‐core radiochemical analyses and sequence stratigraphic analysis in the Gulf of Alkyonides yielded new data on the evolution of the easternmost part of the Gulf of Corinth. Three fault segments, the South Strava, West Alkyonides and East Alkyonides faults, dipping 45, 30 and 45°, respectively, northwards, form the southern tectonic boundary of the Alkyonides Basin. Two 45° southwards dipping segments, the Domvrena and Germeno Faults, form the northern tectonic margin. The Alkyonides Basin architecture is the result of a complex interaction between fault dynamics and the effects of changes in climate and sea/lake level. Chrono‐stratigraphic interpretation of the seismic stratigraphy through correlation of the successive seismic packages with lowstands and highstands of the Late Quaternary indicates that the evolution of the basin started 0.40–0.45 Ma BP and can be divided in two stages. Subsidence of the basin floor during the early stage was uniform across the basin and the mean sedimentation rate was 1.0 m kyear?1. Vertical slip acceleration on the southern tectonic margin since 0.13 Ma BP resulted in the present asymmetric character of the basin. Subsidence concentrated close to the southern margin and sedimentation rate increased to 1.4 m kyear?1 in the newly formed depocentre of the basin. Actual (last 100 year) sedimentation rates were calculated to >2 mm year?1, but are significantly influenced by the presence of episodic gravity flow deposits. Total vertical displacement of 1.1 km is estimated between the subsiding Alkyonides Basin floor and the uplifting Megara Basin since the onset of basin subsidence at a mean rate of 2.4–2.75 m kyear?1, recorded on the East Alkyonides Fault. Gravity coring in the Strava Graben and in the lower northern margin of Alkyonides Basin proved the presence of whitish to olive grey laminated mud below thin marine sediments. Aragonite crystals and absence of the marine coccolithophora Emiliania huxleyi indicate sedimentation in lacustrine environment during the last lowstand glacial interval.  相似文献   

11.
The Valencia Trough is a rift formed during the late Oligocene – early Miocene opening of the western Mediterranean Sea. In this paper, we focus on the crustal structure and on the deep structure of the basin which is hard to delineate because of the widespread volcanism that conceals part of the basement. This work is the result of the study of a dense network of seismic profiling surveys and exploratory wells made in the region. The structure of the deep basement reveals the importance of transfer fracture zones which represent steps in the deepening of the basin. The thinning of the crust follows the basement deepening and we find the same partitioning of structural blocks at the crustal level. Transfer faults also represent limits in the thinning of the crust and each compartment thus delineated has a different thinning and different extensional ratios. Such a discrepancy between the thinning of the upper crust and the thinning of the lower crust may be common in many other rift zones, but is seldom as well imaged as in this study of the Valencia Trough. The transfer zones are related to extensional processes but a simple shear opening is envisaged to explain the discrepancies between thinning and extension and the asymmetry of the margins. The more efficient thinning in the lower crust can be explained by a thermal anomaly in accordance with the recent evolution of the trough. The steady thinning of the margins is discussed in terms of a marginal basin in a compressional context.  相似文献   

12.
The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.  相似文献   

13.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

14.
A new interpretation of a comprehensive seismic- and well-database has resulted in the subdivision of the Mesozoic into four, basin-wide, seismo-stratigraphic depositional megasequences in the Inner Moray Firth (IMF) basin. Regional mapping of the megasequences has led to the construction of a new model for Mesozoic-Recent basin development in the IMF. It now appears that extensional tectonics was the main control on the basin's evolution during the Mesozoic. Structural geometries suggest that both the Triassic (Tr) and Rhaetian-mid Oxfordian (Jl) megasequences were controlled by regional broad-based subsidence associated with local extensional fault activity prior to the onset of renewed rifting in the IMF. In contrast, the late Oxfordian-Ryazanian (Berriasian; J2) megasequence developed in response to active extension characterised by half-graben development. Subsequent Early Cretaceous (Kl) deposition appears to have occurred during a further period of broad regional (thermal) subsidence. It is evident that strike-slip movement on the Great Glen Fault played a negligible role in Mesozoic basin development and it appears only to have had a local control on structural styles during its reactivation in the Tertiary as it accommodated regional uplift and basin inversion. Further subdivision of the J2 megasequence was possible using biostratigraphically-controlled seismic reflector terminations and led to the definition of five regional seismo-stratigraphic sequences (J2.1–2.5). Their geometric, thickness and sedimentary facies variations imply that the onlap-defined sequence boundaries within the late Oxfordian-Ryazanian (Berriasian; J2) megasequence were caused by syn-sedimentary extensional tectonism in a fully marine domain, rather than by fluctuations in global sea-level in a basin that was relatively quiescent tectonically. The new interpretation has particular significance in view of the fact that the Late Jurassic of the IMF was used by Exxon workers to construct part of their chart demonstrating relative changes of coastal onlap and global eustatic sea levels. As they considered that data from the area showed ‘no evidence that tectonics caused the unconformities’, the new interpretation casts doubt on the global applicability of the Late Jurassic section of Exxon's original sea-level chart. Furthermore, the study demonstrates that reflector terminations within both tectonically active and/or fully marine sequences should be treated with extreme caution and not be used to define either periods of apparent low-stand or coastal onlap. Indeed, their appearance may sometimes only represent relatively local, auto- and allo-cyclic sedimentary processes such as submarine fan avulsion or channel switching, unrelated to changes in sea-level. Finally, the work shows that care must be taken in the selection of seismic lines used to establish and illustrate the nature of depositional sequences and their geometries if pitfalls are to be avoided.  相似文献   

15.
The Neoproterozoic basins of central Australia share many features of architecture and sedimentary fill, suggesting common large-scale extrinsic causal mechanisms. In an attempt to improve understanding of these mechanisms we have gathered and analysed new deep seismic reflection data and re-evaluated existing seismic and well-log data from the eastern Officer Basin, the largest and most poorly known of Australia's intracratonic basins. The Officer Basin is asymmetric and has a steep thrust-controlled northern margin paralleled by sub-basins as much as 10 km in depth. Further south the basin shallows gradually onto a broad platform. The basin rests on a thick crust (≈42 km) that is pervaded by a complex of northward-dipping surfaces most of which terminate erosionally against the sediments of the Officer Basin and are interpreted as prebasinal features, possibly faults. Some appear to have been zones of crustal weakness which were reactivated as thrust complexes and played a major role in basin evolution. The sedimentary succession can be subdivided into six megasequences separated by major tectonically and erosionally enhanced sequence boundaries. The megasequences have distinctive sequence stacking patterns suggesting that they were deposited in response to episodic subsidence induced by a major extrinsic tectonic event. The basin initially formed as part of a giant sag basin which incorporated all the present-day intracratonic basins (Amadeus, Georgina, Ngalia, Officer and Savory Basins) in a single large ‘superbasin’ perhaps as a response to mantle processes. Subsidence then ceased for ≈100 Myr producing a regional erosion surface. Beginning in the Torrensian or Sturtian five more major events of varying regional significance influenced the basin's evolution. Four were compressional events, the first of which activated major thrust complexes along the present basin margins, forming deep foreland sub-basins with elevated intervening basement blocks. Once activated, the thrust complexes and sub-basins persisted throughout the life of the intracratonic basins. From this epoch the intracratonic basins of central Australia were decoupled from the giant sag basin and became interrelated but independent features. Available information suggests that the Officer, Amadeus, Georgina, Ngalia and Savory Basins are related and are perhaps products of major tectonic events associated with the assembly and ultimate dispersal of the Proterozoic supercontinent. The closing phases of these basins were strongly influenced by events occurring along the newly created active eastern margin of the Australian continent in the Palaeozoic.  相似文献   

16.
Abstract The uniform stretching model has been applied to seismic reflection profiles and well-log information from the Pearl River Mouth Basin on the northern flank of the South China Sea. Stretching factors were calculated from subsidence curves determined from the stratigraphy by using the backstripping technique to remove the effects of compaction and sediment loading. Variations in rift topography, palaeobathymetry and global sea-level v/ere taken into account. We argue that the Pearl River Mouth Basin formed by lithospheric extension by a factor of about 1.8, lasting from Late Cretaceous to late Oligocene times. Stretching factors calculated from subsidence agree with those determined from the geometry of normal faulting and from crustal thinning. Thus there is no indication of a significant discrepancy between the different estimates of stretching. The geometry of faulting suggests that considerable amounts of local footwall uplift occurred during the rifting period. Small differences between the observed and calculated subsidence curves (∽ 400 m in the middle Miocene) are best explained by minor amounts of extension ( β ∽ 1.1). The time-temperature history of sediments within the basin has also been calculated so that expected vitrinite reflectance and oil abundance could be determined. The results are consistent with each other and are in reasonable agreement with observations from wells.  相似文献   

17.
Unconformities in sedimentary successions (i.e. sequence boundaries) form in response to the interplay between a variety of factors such as eustasy, climate, tectonics and basin physiography. Unravelling the origin of sequence boundaries is thus one of the most pertinent questions in the analysis of sedimentary basins. We address this question by focusing on three of the most marked physical discontinuities (sequence boundaries) in the Cenozoic North Sea Basin: top Eocene, near‐top Oligocene and the mid‐Miocene unconformity. The Eocene/Oligocene transition is characterized by an abrupt increase in sediment supply from southern Norway and by minor erosion of the basin floor. The near‐top Oligocene and the mid‐Miocene unconformity are characterized by major changes in sediment input directions and by widespread erosion along their clinoform breakpoints. The mid‐Miocene shift in input direction was followed by a marked increase in sediment supply to the southern and central North Sea Basin. Correlation with global δ18O records suggests that top Eocene correlates with a major long‐term δ18O increase (inferred climatic cooling and eustatic fall). Near‐top Oligocene does not correlate with any major δ18O events, while the mid‐Miocene unconformity correlates with a gradual decrease followed by a major long‐term increase in δ18O values The abrupt increases in sediment supply in post‐Eocene and post‐middle Miocene time correlate with similar changes worldwide and with major δ18O increases, suggesting a global control (i.e. climate and eustasy) of the post‐Eocene sedimentation in the North Sea Basin. Erosional features observed at near‐top Oligocene and at the mid‐Miocene unconformity are parallel to the clinoform breakpoints and resemble scarps formed by mass wasting. Incised valleys have not been observed, indicating that sea level never fell significantly below the clinoform breakpoint during the Oligocene to middle Miocene.  相似文献   

18.
Sea‐level changes provide an important control on the interplay between accommodation space and sediment supply, in particular, for shallow‐water basins where the available space is limited. Sediment exchange between connected basins separated by a subaqueous sill (bathymetric threshold) is still not well understood. When sea‐level falls below the bathymetric level of this separating sill, the shallow‐water basin evolution is controlled by its erosion and rapid fill. Once this marginal basin is filled, the sedimentary depocenter shifts to the open marine basin (outward shift). With new accommodation space created during the subsequent sea‐level rise, sediment depocenter shifts backwards to the marginal basin (inward shift). This new conceptual model is tested here in the context of Late Miocene to Quaternary evolution of the open connection between Dacian and Black Sea basins. By the means of seismic sequence stratigraphic analysis of the Miocene‐Pliocene evolution of this Eastern Paratethys domain, this case study demonstrates these shifts in sedimentary depocenter between basins. An outward shift occurs with a delay that corresponds to the time required to fill the remaining accommodation space in the Dacian Basin below the sill that separates it from the Black Sea. This study provides novel insight on the amplitude and sedimentary geometry of the Messinian Salinity Crisis (MSC) event in the Black Sea. A large (1.3–1.7 km) sea‐level drop is demonstrated by quantifying coeval sedimentation patterns that change to mass‐flows and turbiditic deposits in the deep‐sea part of this main sink. The post‐MSC sediment routing continued into the present‐day pattern of Black Sea rivers discharge.  相似文献   

19.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   

20.
The recent paper by Go??dowski et al. (2012) is a contribution to the ongoing debate regarding the possible processes involved in the geological evolution of the North Sea basin and adjacent hinterlands during the Cenozoic. Their major conclusions state (1) that the prominent seismic feature called the ‘mid‐Miocene unconformity’ (MMU) is a diachroneous surface in the North Sea basin and forms a regional hiatus and (2) that sediment flux from western Scandinavia was primarily controlled by climate and vegetation cover from the Late Eocene and onwards. We believe, however, that regarding the eastern North Sea basin, which was the depocentre for sediments sourced from southwestern Scandinavia, these conclusions are not supported by the geological record. The so‐called ‘mid‐Miocene unconformity’ is not a regional hiatus in the Danish and Norwegian sectors of the North Sea basin, but represents a distinct shift from prograding delta/slope systems to deposition of deeper marine hemipelagic mud, and thus provides a distinct seismic marker horizon. However, detailed studies show that there is a continuous sedimentation dominated by glacony‐rich mud where a ca. 3 m thick mudlayer spans several millions years and thus are below seismic resolution. Consequently, seismic stratigraphy is not applicable for this condensed section. (1) Warm climate and dense vegetation cover in southern Scandinavia during the mid‐Miocene Climatic Optimum were not able to hinder the progradation of a major siliciclastic wedge from Scandinavia into the North Sea basin. (2) The distinct temperature decrease in the Serravallian does not correlate with the aforementioned progradation, but on the contrary, correlate with the culmination of a major flooding event and deposition of a condensed succession of marine glaucony‐rich clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号