首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 60 毫秒
1.
乌鲁木齐市低空温度层结与采暖期大气污染的关系   总被引:12,自引:5,他引:12  
为了找出乌鲁木齐市低空逆温对大气污染的影响规律,为治理和预测大气污染提供科学依据,利用2000年6月至2006年4月的乌鲁木齐市空气污染监测资料和气象站的探空、地面资料,分析了大气污染与逆温的对应特征。结果表明:乌鲁木齐市低空逆温的出现频率与大气污染指数具有相似的时间分布特征。采暖期空气污染指数API值越大,相对应出现逆温日的比例越高,以贴地逆温多;在污染源排放量一定的情况下,大气中污染物浓度与低空逆温层厚度、逆温层底高、逆温层顶底温差有显著的统计关系,而与逆温层中的逆温强度统计关系不显著。随着逆温层底高度降低,逆温层平均顶高、厚度、逆温层顶底温差的增大,日平均气温、最低气温、最高气温的降低,污染级别呈增加趋势;在采暖期同一时段内,要达到同样的污染级别,悬浮逆温日污染物容纳量比贴地逆温大,贴地逆温更容易造成空气污染;在污染物排放量相同的情况下,污染的程度主要取决于悬浮逆温层的底高和厚度及持续日数。  相似文献   

2.
昆明坝子边界层贴地逆温特征及其成因   总被引:1,自引:0,他引:1  
利用昆明2004~2006年08 h气象加密探空资料对昆明坝子贴地逆温进行了分析,结果显示:昆明坝子贴地逆温年频率为59.9%,厚度为120 m,强度为0.9℃/100 m,与国内其他地区相比具有出现频率高,厚度小,强度略强的特点。昆明坝子贴地逆温频率、厚度、强度呈单峰型年变化,春季频率最高、厚度最厚、强度最强;夏季频率最低、厚度最薄、强度最弱,其变化受降水、风速、晴夜状况变化的影响。坝子地形是影响贴地逆温的重要因素,昆明坝子地形对坝内贴地逆温具有保护稳定作用,尤其是对辐散冷却逆温过程的保护,同时也影响贴地逆温的厚度和强度。昆明坝子贴地逆温存在辐射逆温、地形逆温、水体平流逆温的共同影响,但辐射冷却逆温是主导机制。  相似文献   

3.
乌鲁木齐大气污染物的空间分布及地面风场效应   总被引:9,自引:3,他引:6  
吴彦  王健  刘晖  路光辉  崔新华 《中国沙漠》2008,28(5):986-991
通过对1999—2001年乌鲁木齐市监测站3种污染物浓度的分析,比较深入地掌握了乌鲁木齐市区不同季节污染物的空间分布状况,得出城市首要污染物是PM10,污染物主要在乌鲁木齐市天山区堆积;利用乌鲁木齐城郊地面风场资料、海拔1 000 m高度探空风场资料分析了地面风场常年特征、季节变化特点,得出冬季城中偏南和偏北有辐合性流场,夏季整个城市为辐散性流场;近地层冬季静风频率高;结合污染物的空间分布和高空风场特征,从一个方面解释了乌鲁木齐冬季、夏季污染物浓度变化的原因。  相似文献   

4.
利用乌鲁木齐市城区和郊区的5座100 m气象铁塔10层比湿数据和乌鲁木齐气象站L波段探空雷达资料,详细分析了边界层2 km内比湿廓线特征,城区和郊区近地层比湿季节变化和日变化特征,揭示了乌鲁木齐逆湿的原因,得出以下结果:(1) 乌鲁木齐市比湿季节差异明显,冬季最小,春季、秋季稍大,夏季最大,夏季比湿约为冬季的4~5倍,但秋季仅比春季大1 g·kg–1。除冬季外,比湿均随高度增加而趋于减小,夏季减小最显著,冬季比湿的垂直变化很小。比湿廓线极小值白天和夜间出现高度相近,且有多个极小值。夏季和冬季比湿日变化最大,且位相相反;夏季夜间大、白天小,冬季与之相反。冬季,郊区比湿小于城区;其余季节城、郊比湿差异不明显。(2) 2 km内存在逆湿现象,逆湿出现概率高于35%,概率1月最大、7月最小。1月逆湿最大高度超过1 500 m,7月逆湿最大高度可达到1 900 m,且最大厚度可达到1 550 m。逆湿强度最大在7月和10月可达2. 5 g·kg–1·(100 m)–1,而1月最小。(3) 1月逆湿往往与逆温相伴随,逆温层改变了水汽的垂直分布结构,从脱地逆温层顶起出现逆湿现象,逆湿还与水汽输送有关。本研究可以有效地揭示空气湿度的季节特征,为研究城市大气污染形成的气象因素提供了一个思路。  相似文献   

5.
利用新疆策勒流沙前缘及绿洲内部的野外气象观测数据,运用同步对比与统计分析方法,分析塔克拉玛干沙漠流沙前缘及绿洲内部近地表0.5 m和2 m高度之间逆温逆湿特征,揭示不同时期、典型天气状况下的逆温逆湿特征,为沙漠与绿洲内部的热量和水汽运移交换提供理论依据。结果表明:流沙前缘月平均相对湿度最大值出现在10月,最小值出现在4月,气温最高出现在8月,最低出现在1月。2011年7月逆温逆湿强度最大,逆湿日数占总逆湿日数的38.71%,逆温日数占总逆温日数的3.76%。逆温时间集中在傍晚19:00至上午10:00之间,逆湿出现在上午10:00至晚上21:00之间。绿洲内部月最低气温出现在2011年1月,最高气温出现在2011年7月,相对湿度最小值出现在2011年4月,最大值(74.91%)出现在2010年9月。最强逆温逆湿现象出现在2010年的11月,平均日温差3.48 ℃,垂直高度湿差达2.27%。总体上,在流沙前缘与绿洲内部,冬季的相对湿度整体上大于夏季的相对湿度,而气温整体上表现为夏季高冬季低,同一高度的温度与湿度呈现较好的负相关性。在4种典型天气情况下,流沙前缘与绿洲内部出现的温湿度变化和逆温逆湿特征变化趋势基本一样,但出现的时间上基本存在绿洲内部提前流沙前缘滞后的现象,但在晴天和扬沙天气下,逆湿在流沙地出现的时间提前而流沙前缘滞后。绿洲内部出现的逆温逆湿持续时间一般比流沙地持续的时间较长。  相似文献   

6.
塔中春季晴天近地层温度、湿度和风速廓线特征   总被引:11,自引:2,他引:9  
利用最新安装的塔中"80 m观测塔梯度探测系统"资料,详细分析了塔中春季晴天近地层80 m高度内平均温度、湿度和风速廓线日变化分布特征,得出以下一些结果:(1)温度廓线有夜间辐射型、早上过渡型、白天日射型和傍晚过渡型四种.夜间近地层大气层结稳定,呈逆温特征;最强逆温出现在凌晨06时,此时,80 m高度温差为11.1 ℃.白天,近地层80 m内温度递减率在2.7~5.2 ℃/100 m之间,大气一直处于超绝热不稳定状态.(2)湿度廓线有日夜之分.夜间,30 m以下比湿随高度增高急剧变小,30 m以上比湿随高度增加而增大,大气呈逆湿特征.白天,比湿随时间一直逐渐变小.在近地层30~50 m之间有一个厚度约20 m的逆湿层,全天都存在.(3)风速廓线也有日夜之分.夜间稳定层结,廓线风速值以比对数关系更快的速度向上递增,曲线弯向风速轴.白天不稳定层结,廓线风速值以比对数关系较慢的速度向上递增,曲线弯向高度轴.只有在10 m以下高度,日夜间的风廓线近似遵循对数律关系.  相似文献   

7.
兰州市大气降尘磁学特征及其环境意义   总被引:4,自引:0,他引:4  
对兰州市大气降尘进行系统的环境磁学测量及分析.结果表明,兰州市大气降尘中磁性矿物总体含量较高,以假单畴磁铁矿为主,并伴有少量的磁赤铁矿、纤铁矿及赤铁矿,而且它们主要是来自人类活动产生的污染.过去研究表明,磁性矿物含量年内变化特征显著,冬季污染值高是由于供暖所致,但3月份虽然处于供暖期,它的污染值却明显低于其它供暖期,我们认为主要是兰州市特有的逆温现象:3月份贴地逆温强度低,利于污染物扩散所导致.4、5月份污染值全年最低,除了逆温层的作用以外,还与该月份频发的沙尘暴带来的低XIf值的稀释作用有关.近年来,随着污染防治工作的开展,兰州市大气污染状况有了较大改善,2010年xIf值比2007年降低了38%,证明环境磁学方法可以有效地监测城市污染.  相似文献   

8.
西北干旱区冬、夏季大气边界层结构对比研究   总被引:3,自引:0,他引:3  
乔娟  张强  张杰  王胜 《中国沙漠》2010,30(2):422-431
利用2006年6月28日至7月17日和2007年1月1日至1月10日敦煌加强观测期的探空资料,对比分析了位于西北干旱区的敦煌荒漠冬、夏季大气边界层的结构特征和变化规律。分析认为,该地区冬、夏季大气边界层结构一致,但夏季边界层的厚度明显大于冬季。夏季,白天对流边界层顶最高超过3 500 m,夜间稳定边界层的最大高度平均达到900 m左右,而冬季,对流边界层和稳定边界层日最大高度分别较夏季低约2 350 m和500 m,这说明西北干旱区夏季晴天的确存在极端深厚的大气边界层,但这种超厚大气边界层现象在冬季并不出现。冬、夏季大气比湿和风速在边界层的分布特征符合一般规律,夏季比湿普遍大于冬季,且夏季大气比湿随高度变化幅度明显大于冬季。冬季从地表开始就出现逆湿现象,夏季逆湿则出现在60~100 m高度范围内。冬、夏季白天与夜间的风速均能呈现出Ekman螺线特征,且夏季地转风风速值与地转偏差均远高于冬季。  相似文献   

9.
西宁是我国空气污染最严重的城市之一,冬春季节尤为严重,特别是当春季受到强沙尘暴影响时,会产生5级以上的严重空气污染。这除了当地污染源过量排放和外来沙尘输送外,当地大气扩散条件也是主要原因之一。利用西宁市2000年1月至2002年12月的各种常规气象观测资料和降水pH值资料,计算分析了西宁地区月、季、年各种逆稳层日数和混合层厚度,结果表明,西宁地区月逆温平均日数和月平均混合厚度基本呈反位向。冬半年各种逆温出现的总日数一般在15~24d之间,而夏半年在7~12d之间,前后二者相差一半。月平均混合厚度夏半年高,而冬半年低;季节变化是冬季平均混合厚度最低,春、夏季较高,秋季平均混合厚度介于春季和冬季之间,年最低和最高混合层厚度的平均年变差为145m。月逆温平均日数多(少)、月逆温厚度平均偏高(低),而月平均混合厚度偏低(高)。pH值月、季平均值与月、季平均混合厚度的变化趋势基本一致。混合层厚度高(低),湍流运动强(弱),空气在垂直和水平方向交换时间短(长)、扩散能力强(弱),pH值大(小)。  相似文献   

10.
利用乌鲁木齐市4座10层100 m梯度气象塔2013年6月~2014年4月气象观测资料和7个环境监测站[WTBX]AQI[WTBZ]资料,计算并分析了大气混合层厚度和稳定度特征,探讨了大气混合层厚度和稳定度与污染的关系。结果表明:乌鲁木齐市混合层厚度夏季郊区高、城区低,冬季从南郊—城区—北郊随地势降低依次降低;夏季和冬季分别在1 559~1 772 m和526~1 156 m之间。地面至2 km以上每500 m高度间隔统计混合层厚度,500~1 000 m出现频率最多;月变化为6~9月基本在500 m以上,且每个高度区间其概率均超过10%,10月~次年2月1 500 m以上区间概率明显减小;日变化为中午13:00~16:00达到最高值,下午和傍晚迅速下降。白天较大的感热输送提供充足的热力条件,这也体现出白天以不稳定层结为主,夜间则以稳定层结为主。大气稳定度分类结果,夏季郊区和城区不稳定(A~C类)所占比例差不多,冬季北郊稳定(E、F类)所占比较最大、城区最弱。[WTBX]AQI指数冬季最大,从南郊—城区—北郊依次增大,这与采暖期污染物多、南郊比北郊地势高有利于扩散输送有关。总体来看,乌鲁木齐大气混合层厚度空间分布与气象要素、大气稳定度、地形等密切相关,对AQI[WTBZ]指数分布有重要影响,这对近地层大气污染状况预报有着重要的指导意义。  相似文献   

11.
12.
13.
14.
15.
Estimates of past climate derived from borehole temperatures are assuming a greater importance in context of the millennial temperature variation debate. However, recovery of these signals is usually performed with regularization which can potentially lead to underestimation of past variation when noise is present. In this work Bayesian inference is applied to this problem with no explicit regularization. To achieve this Reversible Jump Markov chain Monte Carlo is employed, and this allows models of varying complexity (i.e. variable dimensions) to be sampled so that it is possible to infer the level of ground surface temperature (GST) history resolution appropriate to the data. Using synthetic examples, we show that the inference of the GST signal back to more than 500 yr is robust given boreholes of 500 m depth and moderate noise levels and discuss the associated uncertainties. We compare the prior information we have used with the inferred posterior distribution to show which parts of the GST reconstructions are independent of this prior information. We demonstrate the application of the method to real data using five boreholes from southern England. These are modelled both individually and jointly, and appear to indicate a spatial trend of warming over 500 yr across the south of the country.  相似文献   

16.
17.
Summary. Due to the non-uniqueness of traveltime inversion of seismic data, it is more appropriate to determine a velocity-depth ( v-z ) envelope, rather than just a v-z function. Several methods of obtaining a v-z envelope by extremal inversion have been proposed, all of which invert the data primarily from either x-p , or T-p , or both domains. These extremal inversion methods may be divided into two groups: linear extremal and non-linear extremal. There is some debate whether the linearized perturbation techniques should be applied to the inherently non-linear problem of traveltime inversion. We have obtained a v-z envelope by extremal inversion in T-p with the constraint that the inversion paths also satisfy x-p observations. Thus we use data jointly in r-p and x-p , and yet avoid the linearity assumptions.
This joint, non-linear extremal inversion method has been applied to obtain a v-z envelope down to a depth of about 30 km in the Baltimore Canyon trough using x-t data from an Expanding Spread Profile acquired during the LASE project. We have found that the area enclosed by the v-z envelope is reduced by about 15 per cent using x-p control on the T-p inversion paths, compared to the inversion without x-p control.  相似文献   

18.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号