首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea‐level changes provide an important control on the interplay between accommodation space and sediment supply, in particular, for shallow‐water basins where the available space is limited. Sediment exchange between connected basins separated by a subaqueous sill (bathymetric threshold) is still not well understood. When sea‐level falls below the bathymetric level of this separating sill, the shallow‐water basin evolution is controlled by its erosion and rapid fill. Once this marginal basin is filled, the sedimentary depocenter shifts to the open marine basin (outward shift). With new accommodation space created during the subsequent sea‐level rise, sediment depocenter shifts backwards to the marginal basin (inward shift). This new conceptual model is tested here in the context of Late Miocene to Quaternary evolution of the open connection between Dacian and Black Sea basins. By the means of seismic sequence stratigraphic analysis of the Miocene‐Pliocene evolution of this Eastern Paratethys domain, this case study demonstrates these shifts in sedimentary depocenter between basins. An outward shift occurs with a delay that corresponds to the time required to fill the remaining accommodation space in the Dacian Basin below the sill that separates it from the Black Sea. This study provides novel insight on the amplitude and sedimentary geometry of the Messinian Salinity Crisis (MSC) event in the Black Sea. A large (1.3–1.7 km) sea‐level drop is demonstrated by quantifying coeval sedimentation patterns that change to mass‐flows and turbiditic deposits in the deep‐sea part of this main sink. The post‐MSC sediment routing continued into the present‐day pattern of Black Sea rivers discharge.  相似文献   

2.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

3.
Pliocene–Quaternary basins of the Ionian islands evolved in a complex tectonic setting that evolved from a mid to late Cenozoic compressional zone of the northern external Hellenides to the rapidly extending Pliocene–Quaternary basins of the Peloponnese. The northern limit of the Hellenic Trench marks the junction of these two tectonic regimes. A foreland-propagating fold and thrust system in the northern external Hellenides segmented the former Miocene continental margin basin in Zakynthos and permitted diapiric intrusion of Triassic gypsum along thrust ramps. Further inboard, coeval extensional basins developed, with increasing rates of subsidence from the Pliocene to Quaternary, resulting in four principal types of sedimentation: (1) condensed shelf-sedimentation on the flanks of rising anticlines; (2) coarse-grained sedimentation in restricted basins adjacent to evaporitic diapirs rising along thrust ramps; (3) larger basins between fold zones were filled by extrabasinal, prodeltaic mud and sand from the proto-Acheloos river; (4) margins of subsiding Quaternary basins were supplied at sea-level highstands by distal deltaic muds and at lowstands by locally derived coarse clastic sediment.  相似文献   

4.
The Nova Basin contains an upper Miocene to Pliocene supradetachment sedimentary succession that records the unroofing of the Panamint metamorphic core complex, west of Death Valley, California. Basin stratigraphy reflects the evolution of sedimentation processes from landslide emplacement during basin initiation to the development of alluvial fans composed of reworked, uplifted sections of the basin fill. 40Ar/39Ar geochronology of volcanic units in middle and lower parts of the sequence provide age control on the tectonic and depositional evolution of the basin and, more generally, insights regarding the rate of change of depositional environments in supradetachment basins. Our work, along with earlier research, indicate basin deposition from 11.38 Ma to 3.35 Ma. The data imply sedimentation rates, uncorrected for compaction, of ~100 m Myr−1 in the lower, high-energy part to ~1000 m Myr−1 in the middle part characterized by debris-flow fan deposition. The observed variation in sediment flux rate during basin evolution suggests that supradetachment basins have complex depositional histories involving rapid transitions in both the style and rate of sedimentation.  相似文献   

5.
《Basin Research》2018,30(Z1):568-595
The continental slopes of the South China Sea (SCS), the largest marginal sea on the continental shelf of Southeast Asia, are among the most significant shelf‐margin basins in the world because of their abundant petroleum resources and a developmental history related to sea floor spreading since Late Oligocene time. Based on integrated analyses of seismic, well‐logging and core data, we systematically document the sequence architecture and depositional evolution of the northern continental slope of the SCS and reveal its responses to tectonism, sea‐level change and sediment supply. The infill of this shelf‐margin basin can be divided into seven composite sequences (CS1–CS7) that are bounded by regional unconformities. Composite sequences CS3 to CS7 have formed since Late Oligocene time, and each of them generally reflects a regional transgressive–regressive cycle. These large cycles can be further divided into 20 sequences that are defined by local unconformities or transgressive–regressive boundaries. Depositional–geomorphological systems represented on the continental slope mainly include shelf‐edge deltas, prodelta‐slope fans, clinoforms of the shelf‐margin slope, unidirectionally migrating slope channels, incised slope valleys, muddy slope fans, slope slump‐debris‐flow complexes and large‐scale soft‐sediment deformation of bedding. Changing sea levels, reflected by evidence from sequence architecture in the study area, are generally comparable with those of the Haq (1987) global sea level curve, whereas the regional transgressions and regressions were apparently controlled by tectonic uplift and subsidence. Composite sequences CS3 and CS4 formed from Late Oligocene to Middle Miocene time and represent continental‐slope deposition during a time of northwest‐northeast seafloor spreading and subsequent development of sub‐basins in the southwest‐central SCS. The development of composite sequences CS5 to CS7 after Middle Miocene time was obviously influenced by the Dongsha Movement during convergence between the SCS and Philippine Sea plates. Climatic variations and monsoon intensification may have enhanced sediment supply during Late Oligocene‒Early Miocene (25–21 Ma) and Late Pliocene‒Pleistocene (3–0.8 Ma) times. This study indicates that shelf‐edge delta and associated slope fan systems are the most important oil/gas‐bearing reservoirs in the SCS continental‐slope area.  相似文献   

6.
The Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.  相似文献   

7.
ABSTRACT A Tortonian to Pliocene magnetostratigraphy of the Fortuna basin supports a new chronostratigraphic framework, which is significant for the palaeogeographical and geodynamic evolution of the Eastern Betics in SE Spain.
The Neogene Fortuna basin is an elongated trough which formed over a left-lateral strike-slip zone in the Eastern Betics in the context of the convergence between the African and Iberian plates. Coeval with other basins in the Alicante–Cartagena area (Eastern Betics), rapid initial subsidence in the Fortuna basin started in the Tortonian as a result of WNW–ESE stretching. This led to transgression and deposition of marine sediments over extensive areas in open connection with the neighbouring basins. Since the late Tortonian, N–S to NW–SE compression led to inversion of older extensional structures. The transpressional tectonics along the NE–SW-trending Alhama de Murcia Fault is related to the rising of a structural high which isolated the Fortuna basin from the open Mediterranean basin. The progression of basin confinement is indicated by the development of restricted marine environments and deposition of evaporites (7.8–7.6 Ma). The new basin configuration favoured rapid sediment accumulation and marine regression. The basin subsided rapidly during the Messinian, leading to the accumulation of thick continental sequences. During the Pliocene, left-lateral shear along the Alhama de Murcia Fault caused synsedimentary folding, vertical axis block rotations and uplift of both the basin and its margins. The overall sedimentary evolution of the Fortuna basin can be regarded as a developing pull-apart basin controlled by NE–SW strike-slip faults. This resembles the evolution that has taken place in some areas of the Eastern Alboran basin since the late Tortonian.  相似文献   

8.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   

9.
This article reports a stratigraphic and structural analysis of the Neogene‐Quaternary Valdelsa Basin (Central Italy), filled with up to 1000 m of uppermost Miocene to lower Pleistocene strata. The succession is subdivided into seven unconformity‐bounded stratigraphic units (synthems, or large‐scale depositional sequences) that include fluvio‐deltaic and shallow‐marine deposits. Structures related to basin shoulders and internal boundaries controlled the Neogene location and geometry of different depocentres. During the Tortonian‐Messinian, a buried NE‐trending high related to regional, basin‐transverse lineaments separated two adjacent sub‐basins. During the lower Pliocene, compressional displacement along NW‐trending, thrust‐related highs controlled the distribution of depocentres and dispersal of sediment. Extensional tectonics, although previously considered the dominant deformation style affecting the rear of the Northern Apennines since the late Miocene, is no longer considered a dominant control on tectono‐sedimentary development of the Valdelsa basin. Instead, the Valdelsa Basin shares features with continental hinterland basins of orogenic belts where compression, extension, and transcurrent stress fields determine a complex spatial and temporal record of accommodation and sediment supply. In the Valdelsa Basin tectonics and eustatic sea‐level fluctuations were dominant in forcing the deposition of sedimentary cycles at several scales. Zanclean and Gelasian large‐scale depositional sequences were mainly controlled by crustal shortening, whereas a eustatic signal was preferentially recorded during the Piacenzian. Smaller scale depositional sequences, common to most synthems, were controlled by orbitally forced glacio‐eustatic cycles.  相似文献   

10.
Sedimentary basins are affected by a large number of forcing factors during their evolution and as a result, it is often difficult to isolate the contribution of each individual factor. Many forcing factors are temporally and spatially heterogeneous; they do not affect all parts of the basin in the same way and at the same time. We show that this heterogeneity can be used to identify the contributions of forcing factors by comparing various parts of a basin. This approach is applied to the Pannonian Basin, a back‐arc basin located in Central Europe. In the basin, the amounts of crustal extension, tectonic inversion and sediment influx varied in space and time, while the connection with the marine realm fluctuated. In this study we focus on two currently unresolved issues: firstly, we establish by what processes and from what directions the basin was filled in, and secondly, we investigate whether the basin was affected by the Messinian Salinity Crisis. The analysis of seismic and well data in the previously less studied SE part of the basin demonstrate that progradation occurred from the southern and eastern basin margins, complementing the previously described progradation from the northwestern and northern basin margins. Elsewhere in the basin, an unconformity observed in the progradational basin infill is intensely debated to be the result of either the Messinian Salinity Crisis (MSC) or basin inversion. Having the advantage of minor Pliocene–Quaternary amounts of inversion in the studied part of the basin we show that no regional unconformity is present in the studied stratigraphic interval, which implies that the effects of the MSC on the basin were minor. We infer that being aware of the fact that the effects of relative sea/lake‐level fluctuations may vary significantly across a basin is critical for understanding the evolution of semi‐enclosed basins.  相似文献   

11.
The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen‐traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low‐relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission‐track thermochronology from a ~6200‐m‐thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ~15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ~13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission‐track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes.  相似文献   

12.
In areas of broadly distributed extensional strain, the back‐tilted edges of a wider than normal horst block may create a synclinal‐horst basin. Three Neogene synclinal‐horst basins are described from the southern Rio Grande rift and southern Transition Zone of southwestern New Mexico, USA. The late Miocene–Quaternary Uvas Valley basin developed between two fault blocks that dip 6–8° toward one another. Containing a maximum of 200 m of sediment, the Uvas Valley basin has a nearly symmetrical distribution of sediment thickness and appears to have been hydrologically closed throughout its history. The Miocene Gila Wilderness synclinal‐horst basin is bordered on three sides by gently tilted (10°, 15°, 20°) fault blocks. Despite evidence of an axial drainage that may have exited the northern edge of the basin, 200–300 m of sediment accumulated in the basin, probably as a result of high sediment yields from the large, high‐relief catchments. The Jornada del Muerto synclinal‐horst basin is positioned between the east‐tilted Caballo and west‐tilted San Andres fault blocks. Despite uplift and probable tilting of the adjacent fault blocks in the latest Oligocene and Miocene time, sediment was transported off the horst and deposited in an adjacent basin to the south. Sediment only began to accumulate in the Jornada del Muerto basin in Pliocene and Quaternary time, when an east‐dipping normal fault along the axis of the syncline created a small half graben. Overall, synclinal‐horst basins are rare, because horsts wide enough to develop broad synclines are uncommon in extensional terrains. Synclinal‐horst basins may be most common along the margins of extensional terrains, where thicker, colder crust results in wider fault spacing.  相似文献   

13.
This paper presents new magnetostratigraphic results from a 1100‐m‐thick composite section across the marine to continental sediments of the central part of the SE margin of the Ebro basin (NE Spain). Integration with existing marine and continental biochronological data allows a robust correlation with the geomagnetic polarity time scale. The resulting absolute chronology ranges from 36.3 to 31.1 Ma (Priabonian to Rupelian), and yields an interpolated age of ~36.0 Ma (within chron C16n.2n) for the youngest marine sediments of the eastern Ebro basin. This age is in concordance with a reinterpretation of earlier magnetostratigraphic data from the western South Pyrenean foreland basin, and indicates that continentalization of the basin occurred as a rapid and isochronous event. The basin continentalization, determined by the seaway closure that resulted from the uplift of the western Pyrenees, was probably coincident with a mid‐amplitude eustatic sea level low with a maximum at 36.2 Ma. The base level drop that followed the basin closure and desiccation does not appear associated to a significant sedimentary hiatus along the margins, suggesting a late Eocene shallow marine basin that rapidly refilled and raised its base level after the seaway closing. Rapid basin filling following continentalization predates the phase of rapid exhumation of the Central Pyrenean Axial Zone from 35.0 to 32.0 Ma, determined from the thermochronology data. It is possible then that sediment aggradation at the front of the fold‐and‐thrust belt could have contributed to a decrease in the taper angle, triggering growth of the inner orogenic wedge through break‐back thrusting and underplating. Contrasting sedimentation trends between the western and eastern sectors of the South Pyrenean foreland indicate that basin closing preferentially affected those areas subjected to sediment bypass towards the ocean domain. As a result, sediment ponding after basin closure is responsible for a two‐fold increase of sedimentation rates in the western sector, while changes of sedimentation rates are undetected in the more restricted scenario of the eastern Ebro basin.  相似文献   

14.
The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting.  相似文献   

15.
《Geomorphology》2002,42(1-2):97-116
Geological and geomorphological surveys have been performed in the area affected by the 1997–1998 Umbria–Marche seismic sequence (Mmax=6.0) aimed at defining the Quaternary tectonic history and the characteristics of the present tectonic regime. Data have been collected from: (1) the analysis of the remnant landsurfaces by means of aerial photos and field surveys; (2) geological surveys in the Cesi–San Martino basin and in the easternmost sector of the Colfiorito basin in order to identify deformative features affecting the Quaternary deposits; (3) the analysis of boreholes and geo-electrical data (derived from previous surveys performed in the 1960s) in order to reconstruct the top of the pre-Quaternary substratum in the Colfiorito basin. Two different successions of remnant landsurfaces have been identified along the faults bounding the basins to the east, in the hangingwall and the footwall, respectively. The difference accounts for a fault-controlled evolution of the landscape at least during the Upper Pliocene–Early Pleistocene. The deformation affecting the Quaternary deposits and landforms in the investigated basins indicates a decreasing tectonic activity along the master faults since the Middle Pleistocene. Surface deformation due to tectonics is faint and displayed by gentle warping of the landforms during the late Quaternary. As for the basin geometry, subsurface data show that two minor depressions formed in the Colfiorito Basin during the Quaternary, the oldest one close to the fault bounding the basin, while the youngest (and deepest) formed in the inner portion of the basin. Therefore, the present geometry is different from that of other fault-bounded Quaternary depressions of the central Apennines (typically half-graben basins), showing the maximum depth of the substratum in the area close to the master fault. Tectonic history may be summarised as follows: (1) origin of the Quaternary fault-bounded Colfiorito and Cesi–San Martino basins; (2) evolution of the basins with a half-graben style; (3) significant reduction of tectonic activity since the Middle Pleistocene. During the third phase, the evolution of the basins is no longer related to a half-graben style. In the case of the Colfiorito basin, a new depression is superimposed to on the previous half-graben whose evolution is related to the lowering of the inner portion of the basin through warping. Moreover, present activity does not result in fault-related surficial displacements but only in “continuous” deformation spread over the basins. These conclusions have fundamental implications for the seismotectonic framework of the 1997–1998 earthquake sequence. This deformation style is, indeed, in agreement with the coseismic deformation modelled by means of the SAR interferometry analyses carried out by other institutions during the seismic sequence, and with the lack of evident surface faulting related to the mentioned events in the investigated area. This evidence indicates that the evolution of the investigated area since the Middle Pleistocene resulted from the summation of deformative episodes similar to that which occurred during the recent seismic sequence. As a consequence, no earthquakes with magnitude larger than 6 are expected in the area.  相似文献   

16.
This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro‐foreland basin (Venetian–Friulian Basin). Our discussion is based on the depositional architecture and basin‐scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long‐term trends and short‐term high‐magnitude (‘aberrant’) episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year?1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year?1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene–Pleistocene, when the basin‐scale depositional rate increased to an average of 0.26 mm year?1 (Pliocene) and 0.73 mm year?1 (Pleistocene). This result fits nicely with the long‐term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7–0.9 Ma), the acceleration of the global cooling trend (since 3–4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high‐frequency and high‐magnitude cooling–warming cycles are particularly powerful in promoting erosion in mid‐latitude mountain belts and therefore in increasing the sediment flux in foreland basins.  相似文献   

17.
Multichannel high‐resolution seismic data along the northwestern margin of the Great Bahama Bank (GBB), Bahamas, detail the internal geometry and depositional history of a Neogene‐Quaternary carbonate slope‐to‐basin area. The stratigraphic architecture through this period evolves from (i) a mud‐dominated slope apron during the Miocene, (ii) a debris‐dominated base‐of‐slope apron during the Late Pliocene and then (iii) return to a slope apron with very short prograding clinoformal aprons during the Pleistocene. This geometric evolution was broadly constrained by the development of the Santaren Drift by bottom current since the Langhian. The drift expands along the northwestern GBB slope, forming a continuous correlative massive feature that shows successive phases of growth and retreat and influenced the downslope sediments distribution. Indeed, Late Pliocene deposits are confined into the moat, forming a strike‐continuous coarse debrites belt along the mid‐slope, preventing their free expansion into the basin. The occurrence of basinal drift that operated since 15 Ma showed a significant upslope growth around 3.6 Ma and is interpreted as resulting from the closure of the Central American Seaway which also coincides with a global oceanographic re‐organization and climate changes in the Northern Hemisphere.  相似文献   

18.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   

19.
Although the Neuquén basin in Argentina forms a key transitional domain between the south‐central Andes and the Patagonian Andes, its Cenozoic history is poorly documented. We focus on the sedimentologic and tectonic evolution of the southern part of this basin, at 39–40°30′S, based on study of 14 sedimentary sections. We provide evidence that this basin underwent alternating erosion and deposition of reworked volcaniclastic material in continental and fluvial settings during the Neogene. In particular, basement uplift of the Sañico Massif, due to Late Miocene–Pliocene intensification of tectonic activity, led to sediment partitioning in the basin. During this interval, sedimentation was restricted to the internal domain and the Collon Cura basin evolved towards an endorheic intermontane basin. From stratigraphic interpretation, this basin remained isolated 7–11 Myr. Nevertheless, ephemeral gateways seem to have existed, because we observe a thin succession downstream of the Sañico Massif contemporaneous with the Collon Cura basin‐fill sequence. Comparisons of stratigraphic, paleoenvironmental and tectonic features of the southern Neuquén basin with other foreland basins of South America allow us to classify it as a broken foreland with the development of an intermontane basin from Late Miocene to Late Pliocene. This implies a thick‐skinned structural style for this basin, with reactivation of basement faults responsible for exhumation of the Sañico Massif. Comparison of several broken forelands of South America allows us to propose two categories of intermontane basins according to their structural setting: subsiding or uplifted basins, which has strong implications on their excavation histories.  相似文献   

20.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号