首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 645 毫秒
1.
气候变暖背景下祁连山区夏季积雨云变化特征   总被引:1,自引:1,他引:0  
利用祁连山区及其周边26个气象观测站1961-2005年夏季积雨云形状和气温观测资料,采用线性趋势分析、墨西哥帽小波分析等方法,分析了祁连山区夏季积雨云出现频率的空间分布与时间变化特征,探讨了与气候变暖的关系,并选用同期NCEP/NCAR全球再分析资料,对祁连山区夏季积雨云的环流特征进行分析.结果表明:①祁连山区夏季积雨云出现频率明显高于河西走廊和柴达木盆地.②祁连山区夏季平均气温呈逐年上升趋势,20世纪90年代以来,上升趋势更为明显.祁连山区夏季积雨云出现频率明显减少,近45年来祁连山区夏季积雨云出现频率减少近8%.③在3和20年尺度上,祁连山区夏季气温和积雨云出现频率为反相位变化结构为主;在气温振荡最强的10a时间尺度上,20世纪80年代初期以前2者为反相位关系,而之后随着祁连山区显著增温,2者则呈现出同相位变化特征.④在年代际尺度和年际尺度上,祁连山区夏季气温和积雨云出现频率均为显著的负相关关系.分析表明,在气候变暖的背景下,祁连山区和河西走廊的夏季积雨云出现频率减少,而柴达木盆地为增多.⑤祁连山区夏季积雨云出现频次的多少,是对欧亚500hpa环流异常的响应.  相似文献   

2.
利用祁连山区及周边29 个气象观测站近41 年秋季云形状和气温观测资料, 分析了祁连山区秋季层状云出现频率的空间分布与时间变化特征, 探讨了秋季层状云出现频率与气候变暖的关系, 并选用同期NCEP/NCAR全球再分析资料, 对祁连山区秋季层状云的环流特征和水汽输送进行了分析。结果表明:①祁连山区秋季层状云出现频率为8%~26%, 呈西少东多的空间分布。②近41 年来, 祁连山区秋季增温1.2℃, 气温变化的倾向率为0.29℃/10a, 80 年代中期以后发生了增温的突变。③祁连山区秋季层状云的出现频率呈明显的减少趋势, 近41 年来减少约11%, 倾向率为-2.7%/10a, 尤其在20 世纪80 年代中期以后与同期祁连山区显著增温相对应, 层状云出现频率减少更为明显, 层状云出现频率与气温呈明显的反相变化趋势。④在气候变暖的背景下, 祁连山区的层状云出现频率减少, 减少的幅度从西北向东南递增。当祁连山区秋季平均气温在升高1℃ 时, 祁连山区层状云出现频率减少2%~10%, 祁连山西段、中段减少2%~4%, 祁连山东段减少4%~10%。⑤祁连山区秋季层状云偏多与偏少年在欧亚500 hPa 环流场上存在明显的差异, 层状云偏多年, 极涡向亚洲北部伸展, 东亚大槽较偏弱, 乌拉尔山高压脊偏强, 脊前偏北气流引导极地冷空气沿偏西北路径向中国西北地区输送, 中亚地区到高原上不断有低值系统发展东移, 同时南支槽加强, 来自阿拉伯海、南海、东海的暖湿气流向内陆地区的输送明显加强, 与进入高原北部的冷空气交绥, 从而使祁连山区层状云出现频次增多;层状云偏少年, 中亚-中国西北地区暖性高压异常加强, 东亚大槽偏强, 冷空气活动路径偏东, 亚洲大陆至西太平洋冬季风特征明显, 偏北风加强, 不利于东南暖湿气流向西北内陆地区的输送, 冷暖气流在祁连山区交绥次数减少, 从而使祁连山区层状云出现频次减少。⑥印度洋沿孟加拉湾的向北的水汽输送, 副热带西太平洋的偏东气流在南海和中南半岛附近转为向北的水汽输送, 地中海、里海的西风带纬向水汽输送是3支影响祁连山区秋季层状云多寡的水汽输送通道, 进而对祁连山区秋季降水产生影响。  相似文献   

3.
祁连山层状云的时空分布及其环流特征分析   总被引:2,自引:1,他引:1  
利用祁连山区29个测站1961—2001年1—12月云状资料,分析了过去41 a祁连山区层状云的时空分布特征及其与大环流变化的关系。结果表明:①祁连山区层状云从西北向东南递增,祁连山主区层状云出现频次高于周边地区。②大部区域层状云显著减少,其中河西走廊东部减少幅度最大。③层状云年平均和季度的年际变化阶段性基本一致,1990年以前以偏多为主,1990年发生突变性减少,以后一直处于偏少的状态。④层状云出现频率与各月降水正相关显著。⑤层状云偏多年与偏少年差值最大的月份是8月和5月,偏多年和偏少年在亚洲500 hPa高度场上有明显的差异。⑥与层状云频率显著相关的环流特征量主要有:副高面积、强度、极涡强度、青藏高原高度场指数。祁连山层状云的减少趋势主要是副高面积增大和强度增强的结果。最后,用前期环流特征量为因子建立了祁连山主区层状云频率的预测模型。  相似文献   

4.
 根据有关水文气象台、站的观测资料,分析了El Nino事件与祁连山区气温、降水的对应关系,研究了祁连山区出山径流对EI Nino现象的响应。结果表明, EI Nino现象对祁连山区的气温、降水和径流的影响随着发生时间和地段的不同而不同。EI Nino 事件发生之年, 整个祁连山区均出现气温偏高、降水减少及径流偏枯的现象,尤以东段和中段最为明显。El Nino事件次年, 祁连山区东段和中段气温偏高、降水减少及径流偏枯的程度不如El Nino事件当年那样显著,而西段的气温、降水及径流与El Nino事件则无明显关系。  相似文献   

5.
基于青藏高原东北部边缘祁连山区及附近有关气象站1960—2011年的气温观测数据,利用线性倾向分析、滑动平均法、Mann-Kendall法等方法,对甘肃河西内陆河流域石羊河、黑河、疏勒河三大水系上游祁连山区气温系列的多尺度变化特征与突变进行了分析。结果表明,近50余年来,该区域气温变化与青藏高原整体的气温变化基本一致,但又有着鲜明的区域差异。具体表现为:三大水系上游山区气温的年代际、年际、各个季节的变化总体上均呈现显著的上升态势,但受区域地理环境的影响,各水系上游山区气温上升的幅度有所不同,气温的气候倾向率总体上呈现出由东向西逐渐增加的趋势。位于祁连山区东部的石羊河上游山区年平均气温突变发生时间在1980年代中期前后,位于祁连山区中、西部的黑河、疏勒河水系上游山区年平均气温发生突变的时间为1990年代后期。但东部的石羊河上游山区气温跳跃幅度较小,中、西部的黑河、疏勒河水系上游山区,尤其是西部的疏勒河水系上游山区气温跳跃幅度较大。2000年代是近50余年来河西内陆河三大水系上游山区最暖的10 a。与年平均气温和其他各季节气温相比,各水系山区冬季(11月至次年2月)气温升幅最大,黑河、疏勒河山区春季气温升幅最小,石羊河山区夏季气温升幅最小。  相似文献   

6.
黑河流量对祁连山气候年代际变化的响应   总被引:38,自引:10,他引:28  
李栋梁  刘洪兰 《中国沙漠》2004,24(4):385-391
利用祁连山区8个气象站自建站至2003年观测的月降水、气温资料, 在分析各站气候要素互相关的基础上, 建立了代表祁连山整体气候变化的1944-2003年历年各月、季降水距平百分率和气温距平序列, 以及黑河上游莺落峡水文站观测的径流量, 分析了黑河流量与祁连山区降水、气温的年代际变化。结果表明: 祁连山气候演变存在非常明显的年际和年代际变化。自1970年代以来, 除夏季降水量呈上升趋势外, 秋、冬、春三季均表现出明显的变干, 尤其是秋、冬两季。本世纪初降水量又有增加趋势。比较过去60a气温变化, 1940年代最暖, 1960年代最冷。自1980年代以来, 祁连山区气候明显变暖, 各季气温显著升高, 尤以冬季升温最快, 目前已超过1940年代的暖期。1980年代的流量是过去60a中最大的10a, 1990年代有所减小。1990年代后期流量明显增加, 目前除春季外, 夏、秋、冬季已转入上升趋势。  相似文献   

7.
亚洲夏季风北部边缘带变化及中高纬度行星波对其影响   总被引:1,自引:0,他引:1  
谭政华  巩远发 《地理学报》2022,77(5):1120-1137
本文使用1961—2016年NCEP1再分析资料和GPCC全球降水分析资料,确定了亚洲夏季风北部边缘带的空间范围,分析了季风边缘带的南北边界位置、降水、面积的相互关系和年代/际变化特征,讨论了造成季风边缘带夏季降水异常的影响因子。主要结论如下:亚洲夏季风北部边缘带平均位置位于青藏高原中部经黄土高原和中国东北地区向亚洲东岸延伸的带状区域上,根据下垫面性质、区域生态环境和气候特征,将季风北边缘带划分为青藏高原区(85°E~105°E)、黄土高原区(105°E~115°E)和中国东北区(115°E~135°E)3段,季风边缘带降水的年际变化与其南边界位置有显著的正相关,青藏高原季风边缘带面积变化与其南界位置显著负相关,黄土高原季风边缘带和东北季风边缘带面积与北边界位置显著正相关,且3段季风边缘带的位置、面积、降水均有明显的年际、年代际变化特征。季风边缘带夏季降水偏少与欧亚中高纬对流层上层自西向东传播的欧亚(EU)遥相关波列密切相关,季风边缘带夏季降水偏少时期,亚洲低纬度地区对流活动偏弱、非洲东岸近赤道地区200 hPa异常辐合可能造成索马里急流和亚洲夏季风强度整体偏弱,200 hPa亚洲急流强度弱且位置偏北,500 hPa中国北方受西风带异常高压控制,东亚夏季风降水主要集中在中国南方地区,季风边缘带夏季降水异常偏少。季风边缘带夏季降水偏多与欧亚中高纬对流层上层沿亚洲急流向东传播的丝绸之路(SRP)波列密切相关,200 hPa、500 hPa环流形势与季风边缘带夏季降水偏少时期基本相反,东亚夏季风降水空间分布呈北多南少特征,季风边缘带夏季降水异常偏多。  相似文献   

8.
塔里木盆地春季沙尘暴频次与大气环流的关系   总被引:1,自引:1,他引:0  
李红军  杨兴华  赵勇  王敏仲  霍文 《中国沙漠》2012,32(4):1077-1081
使用1961-2009年春季NCEP/NCAR再分析资料和塔里木盆地37个气象站沙尘暴频次资料,分析了塔里木盆地春季沙尘暴频次与大气环流的关系。结果表明:①近40 a,在500 hPa高度场上,两者在巴黎盆地和蒙古国中西部存在显著负相关,在乌拉尔河附近存在正相关,蒙古国中西部500 hPa高度场在升高,而乌拉尔地区的在降低,两地间经向环流的减小引起盆地沙尘暴减少。②塔里木盆地春季沙尘暴频次突变与显著负相关区蒙古国西部500 hPa高度场突变相联系,两者的变化趋势基本是相反的,盆地沙尘暴频次突变出现在1985年,500 hPa位势高度突变提前于沙尘暴频次突变,出现在1980年和1984年。③在年际、年代际尺度上,春季500 hPa位势高度场上蒙古国西部气旋和东欧平原反气旋增强的环流形势配置是塔里木盆地沙尘暴多值年的典型背景。  相似文献   

9.
陕西春季干旱与多雨的环流特征对比分析   总被引:3,自引:2,他引:1  
选用陕西86个气象站1961-2007年3~4月降水量和NCEP/NCAR再分析资料,利用标准化降水指数确定陕西春季干旱与多雨的划分指标,并对陕西省春季干旱与多雨年的同期和前期大气环流特征进行了合成分析,结果表明陕西春季降水具有南多北少,年际变率大等特点。陕西春季干旱少雨年同期500 hPa欧亚中高纬度距平场呈"-+-"分布,反映了中亚长波脊强盛,东亚大槽偏深的主要环流特征;而陕西春季多雨年乌拉尔山和日本海为正距平,鄂霍次克海和咸海、里海为负距平,欧亚中、高纬度距平场呈反位相分布,反映乌山阻塞高压建立与崩溃过程中,中亚长波槽经高原东移的环流特征,东亚中纬度纬向环流发展,冷空气易滞留在偏北地区,暖湿气流活跃更易北上,形成了陕西春季多雨天气。从850 hPa流场分布看,陕西春季多(少)雨通常对应同期对流层低层亚洲大陆东岸偏南气流的增强(减弱)。此外前年冬季乌山高压脊偏弱(强)和东亚大槽偏浅(深)与陕西春季多(少)雨有密切联系。  相似文献   

10.
科学监测祁连山积雪面积及变化特征对该区域气候研究、雪水资源开发利用、环境灾害预报及生态环境保护等具有重要意义。基于2001—2017年MOD10A2积雪产品和气象数据,分析祁连山积雪面积动态变化特征及与气温降水关系。结果显示:(1)2001—2017年祁连山积雪面积年际波动趋势较大,呈减小趋势,多年平均积雪面积约为5x104 km2,占祁连山总面积的25.9%;年内变化成 “M”型,即在一个积雪年中有两个波峰和波谷,波峰出现在11月和1月,波谷出现在7月;季节变化波动趋势较大,夏冬季积雪面积减小趋势大于春季,秋季呈现略微增加趋势。(2)祁连山区积雪面积主要分布在3 000~4 000 m及4 000~5 000 m,积雪覆盖率随着海拔上升呈现逐渐增大的趋势;祁连山区不同坡向积雪覆盖面积差异较大,积雪覆盖率差异较小;积雪频率高值区呈典型的条带状分布,与祁连山地形相一致,呈西北-东南分布,积雪频率高值区的分布西部大于东部。(3)初步分析认为祁连山积雪面积变化对气温要素更敏感。  相似文献   

11.
青藏高原热状况与大气超长波的关系   总被引:4,自引:0,他引:4  
黄忠恕 《地理研究》1986,5(1):32-41
本文分析了青藏高原冷暖年中大气超长波和东亚至西太平洋地区副热带纬圈环流的变化,认为冷年和暖年中大气超长波和东亚副热带纬圈环流状况的不同,可能是影响汛期长江流域大范围持续性旱涝变化的原因之一。  相似文献   

12.
基于GIS的祁连山区气温和降水的时空变化分析   总被引:9,自引:4,他引:5  
基于ArcGIS平台Geostatistical Analyst中的Kriging插值方法,和Spatial Analyst中的Surface Analyst,分析了祁连山区18个气象站点1960\_2005年气温、降水的数据,并且空间化显示了各年代间的气温、降水变化。结果表明:①1960\_2005年祁连山区的气温呈显著的上升趋势,升幅基本在0.5 ℃/10a左右,20世纪90年代中期以后气温上升最为明显,变幅最大超过1℃。②祁连山区的气温变化和西北地区的气温变化有很好的同步性。冬季气温分布趋势与夏季相同,但冬季南北坡的温差明显小于夏季。各月的平均气温直减率差别大,冬季气温直减率较低,春季气温直减率较大。③分析了祁连山区降水的累积距平,祁连山的东、中、西三段的降水在80年代以前都是呈下降的趋势,在80年代以后表现为显著增加,并且中部表现最为明显。在祁连山的北坡、南坡和的降水总体趋势变化也是在80年代,在80年代以前呈下降趋势,而80年代后为上升趋势。④祁连山区的降水呈上升趋势,降水具有明显的区域性和季节性, 从东南向西北逐渐减少,冬季降水均在13 mm以下,而在夏季降水量最高可达247 mm。  相似文献   

13.
1960 年以来青藏高原气温变化研究进展   总被引:9,自引:0,他引:9  
宋辞  裴韬  周成虎 《地理科学进展》2012,31(11):1503-1509
青藏高原是中国最大、世界海拔最高的高原,它对全球气候系统存在显著影响.本文对青藏高原自1960年以来的气温变化特征及其影响因素的研究进行了概述与总结.近50 年来,青藏高原气温明显上升,经历了一个冷期和一个暖期,气温在20 世纪80 年代发生突变,整体呈现前低后高波动上升的趋势;最低气温和最高气温呈不对称的线性增温趋势,最低气温的上升速率要比最高气温快得多;而极端事件频率、强度也有所变化,其中低温事件大大减少,高温事件则明显增加;各类界限温度的积温以及持续日数等生物温度指标也都显著增加.在空间分布上,青藏高原气温呈现出整体一致增暖,并且有西高东低、南北反相的变化形态.影响青藏高原气温变化的因素有很多,主要包括天文因素、高原内部气象要素以及外部环流影响等.  相似文献   

14.
本文通过对西藏高原洞穴堆积物的粘土矿物组合特征的分析,初步探讨了喀斯特地貌形成的古地理环境。喜马拉雅山北坡旧定日东山洞穴堆积物是较温湿的森林草原环境下的产物,新定日西侧遮普若山北坡洞穴堆积物则是在高寒草甸环境下形成的;拉萨西南曲水大佛后溶洞堆积物形成于湿热的亚热带气候环境,而拉萨西山洞穴堆积物却形成于较温湿的草原环境;唐古拉山南坡安多一带的洞穴堆积物则是在高寒的草甸环境下形成的。并以此研讨了西藏高原喀斯特的成因和时代。  相似文献   

15.
根据河西走廊地区深层地温观测时间最长、资料完整的酒泉、张掖及武威3个地面气象站1980年1月~2011年2月的逐月80、160、320 cm地温资料,运用线性拟合、滑动平均和Mann-Kendall方法进行趋势和突变分析。研究表明:近31 a来河西走廊地区80、160、320 cm深层地温均呈显著的波动上升趋势,其中各深层地温夏季增温速率最大,春季次之,冬季最小,各季各深层地温均发生了暖突变。各深层地温年时间序列中存在3 a波动周期,且表现为前期冷,后期暖的演变趋势,线性增温速率显著,80 cm地温增温速率0.55 ℃/10 a,暖突变出现在1994年;160 cm地温增温速率0.59 ℃/10 a,暖突变出现在1995年;320 cm地温增温速率0.60 ℃/10 a,暖突变出现在1996年。说明年深层地温随着深度的增加,暖突变出现时间存在滞后现象。气温对深层地温的影响作用明显,深层地温受气温升高的影响也呈升高趋势。但随着深度的增加气温与地温的相关性略有降低,这是由于深层地温的变化存在滞后性所致。  相似文献   

16.
利用青藏高原东北部68个国家气象站的气象资料,统计了1961—2015年的全区月、季、年冷空气次数、强度和强降温综合强度资料,应用气候诊断方法分析了冷空气次数、强度和强降温综合强度的变化特征及其成因。结果表明:在年尺度上,1961—2015年青藏高原东北部全区冷空气年平均出现次数为49.6次,冷空气次数气候变化倾向率每10 a减少0.600次,减少趋势不显著;全区冷空气年平均强度为0.39,气候变化倾向率每10 a降低0.022,减弱趋势显著;全区冷空气年强降温综合平均强度为0.67,气候变化倾向率每10 a降低0.005,减弱趋势不显著。在季节尺度上,冷空气次数夏季减少的趋势显著,而春季减少的趋势和秋季、冬季增加的趋势不显著;冷空气强度冬季减弱的趋势显著,而其他季节减弱的趋势不明显;强降温综合强度春季增强趋势和其他季节减弱的趋势不显著。1961—2015年大西洋欧洲区极涡面积指数等因子减小以及热带北大西洋海温指数等因子增大是导致全区年冷空气次数减少的主要成因之一,而西藏高原指数等因子增强和热带印度洋海温偶极子指数等因子减弱是导致年冷空气强度减弱的主要原因之一。  相似文献   

17.
利用常规气象观测资料和ECMWF提供的ERA-Interim 0.125°×0.125°再分析资料,通过对2012年5月21~23日和2013年5月26~29日南疆西部两次暴雨过程中等熵面特征的对比分析,得到暴雨过程中的动力热力结构模型。结果表明:南疆西部暴雨过程是在中亚低涡系统影响下,高、中、低空急流耦合并叠加地形强迫的综合作用下形成的。中亚低涡前部中高层向东输送的冷空气翻山后下沉,与低层南疆盆地东部向西输送的冷空气汇合抬升,与中层暖空气交汇,同时上升运动加强促使水汽辐合凝结,是降水的重要原因,短时强降水时冷空气强度弱于暖空气,持续性降水时反之。中低层等熵面位涡与降水关系密切。  相似文献   

18.
姚慧茹  李栋梁 《中国沙漠》2019,39(2):122-133
利用青藏高原气象台站逐日最大风速数据和JRA-55再分析资料,通过引入集中期和集中度的概念,分析了1971-2012年高原大风在风季的分布形态及其环流背景。结果表明:青藏高原的大风天气在春季(3-5月)最多,在夏末秋初(8-10月)最少。1971-2012年,大风日数以14 d/10a的速度减少,同时大风日数的年较差也在缩小。大风集中期随纬度增大而延后,并且在近42年大体呈提前的趋势,从3月底4月初提前至2月底3月初。大风集中度则有增大的趋势,并取决于大风日数,大风日数越多,集中度越低。高原大风集中期受到急流系统经向位移的制约,2月和3月北非和西亚地区的副热带急流以及4月中层西风带偏南时,伴随着副热带气压偏低,青藏高原春季大风天气偏多,大风集中期偏晚。反之,大风天气偏少,集中期偏早。大风集中度的大小则与中亚和高原地区2-4月副热带急流强度有关,2月和4月副热带急流偏弱、3月急流偏强时,大风日数集中在3月,集中度较高。反之,集中度较低。春季(3月)高原大风天气是冷、暖空气系统共同作用的结果,高原东部的大风天气多受北方冷空气系统影响,高原西部的大风天气多受南方暖空气系统影响、以西南风为主。  相似文献   

19.
干旱区春季强降水对安排春耕播种生产、缓解风沙危害和春旱、净化空气质量、改善生态环境和促进农作物生长具有十分重要的意义。以1953-2015年民勤春季3-5月降水为背景,针对2001-2015年春季日降水量≥5 mm强降水天气过程,综合运用地面、高空和云图等气象资料,以及NCEP再分析资料,通过12个春季典型干湿年对比分析,得出春季强降水过程的气候特征和成因。1953-2015年民勤春季强降水日数和降水量呈增加趋势,过程特点是降水时间长,集中在上午,多为连续降水。新疆至河西冷空气东移南下,与青藏高原低值系统、深厚湿层共同影响,生成高原云系发展北抬造成民勤春季强降水。春季强降水的发生,与欧亚纬向气流、高原低槽和东亚大槽的强度密切相关。预报关注重点是西北冷空气、高原天气系统和云系、偏南气流水汽输送。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号