首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
了解植被生长对气候变化的响应是厘清生态系统动态关系的重点。基于1990—2018年气象数据和归一化植被指数(NDVI),应用偏相关分析与地理探测器等方法,分析了在生长季,毛乌素沙地东南缘不同类型植被年均NDVI的变化趋势,探讨了年均气温与年总降水量对各类型植被的影响。结果表明:(1) 1990—2018年生长季研究区植被年均NDVI显著与极显著增加面积达97.9%,整体生态环境质量大幅度改善。2005年之前植被年均NDVI增速缓慢,此后以0.011·a-1的速率发生了突变增加,其中灌丛类植被年均NDVI增长幅度最大。(2) 2000年为年总降水量与年均气温的趋势突变点,突变前年总降水量以-5.510 mm·a-1的速率减少,此后以5.541 mm·a-1的速率增加,且主要依赖于大雨雨量的增加;年均高温与年均低温在突变前上升速率分别为0.122 ℃·a-1与0.230 ℃·a-1,突变后,年均高温下降速率为-0.014 ℃·a-1,而年均低温上升速率为0.022 ℃·a-1。(3) 在植被年均NDVI缓慢增长阶段(1990—2005年),年均低温对植被影响较大,与不同类型植被年均NDVI多呈显著正相关;在植被年均NDVI快速增长阶段(2006—2018年),年总降水量与不同类型植被年均NDVI呈显著正相关,大降雨事件的频发使得降水量对于植被的生长起主导作用。年总降水量与年均气温尤其是年均低温的交互作用是促进植被生长的关键。  相似文献   

2.
新疆北部是我国降雪高频区之一,随着全球变暖降雪量呈显著增加趋势,对新疆气候产生重要影响,由于观测资料限制对该区域小时降雪研究还未开展,影响降雪精细化预报和服务能力提升。因此,利用新疆天山山区及其以北(以下称“新疆北部”)2012年11月—2021年2月50个国家气象站小时降雪观测资料,分析了冷季(11月—翌年2月)小时降雪特征,并按日降雪量从高到低挑选30个大暴雪过程分析其小时降雪特征、影响系统及典型环流配置。结果表明:(1) 阿勒泰北部、塔城盆地、伊犁河谷为降雪小时数(SHN)高频区,可达200 h·a-1以上;天山山区SHN高频区为海拔1800~2000 m的中山带,达127.3 h·a-1,2000 m以上降雪很少。(2) 北疆和天山山区小时降雪量(R)≤1.0 mm·h-1量级SHN占比分别为91.7%和91.9%,对降雪量贡献分别为70.7%和68.9%,R>1.0 mm·h-1为小时极端降雪事件,对北疆和天山山区降雪量贡献分别为29.3%和31.1%。(3) 极端暴雪过程平均SHN为25.5 h,平均降雪量为30.7 mm,雪强约为1.2 mm·h-1,大暴雪过程由长时间降雪导致,降雪持续时间是开展大暴雪研究和进行预报服务的关键点,造成大暴雪过程的影响系统主要有中亚长波槽、中亚低涡、乌拉尔山长波槽和西西伯利亚低涡(槽),占比分别为30.0%、6.7%、13.3%和50.0%,中纬度长波槽(涡)和北方西西伯利亚低涡(槽)系统各为50.0%。  相似文献   

3.
我国西北干旱区内陆河流域水资源匮乏,水资源利用主要用于农业生产,准确估算内陆河流域蒸散发与农业灌溉效率,对研究内陆河流域气候变化和水资源合理利用具有重要作用。利用基于地表能量平衡方程的SEBAL模型,对2017—2018年疏勒河流域蒸散量进行定量估算与时空分布特征分析,并结合降水量与净灌溉水量数据,对疏勒河流域昌马灌区的年内灌溉水有效利用系数进行估算。结果表明:(1) 疏勒河流域2017—2018年日均ET呈单峰变化趋势,最大值为6月的5. 03 mm·d–1,最小值为12月的0. 55 mm·d–1,并存在明显的空间分布差异。(2) 疏勒河流域四季ET差异显著,夏季ET达到最高的201. 83 mm,春秋次之,冬季最低为53. 92 mm;ET由东南向西北逐渐减小,流域上游ET明显高于中下游地区。(3) 昌马灌区各灌溉时段不同的灌溉水量造成了各灌季蒸散量的差异,灌区ET高值区主要分布在中部与东南部,低值区主要分布在西北部和灌区边缘。(4) 昌马灌区年内灌溉水有效利用系数呈下降趋势,其中春灌、夏灌、秋灌和冬灌分别为0. 76、0. 71、0. 69和0. 55,年均灌溉水有效利用系数为0. 67。  相似文献   

4.
莫兴国  刘苏峡  胡实 《地理学报》2022,77(7):1730-1744
全球变化下黄河源区水文过程的演变影响流域生态系统的水源涵养功能,流域植被改变也影响水循环。本文基于气候、植被信息和VIP分布式生态水文模型,开展黄河源区水碳循环要素变化的集成模拟,分析了气候—植被—水文要素的协同演变机制。结果表明,2000年以来黄河源区气候呈暖湿化趋势;植被绿度明显提高,2010—2019年比2000—2009年平均增加了4.5%;生长季延长了至少10 d;植被生产力(GPP)显著上升,倾向率为4.57 gC m-2 a-1;植被恢复措施对GPP变化的贡献约为23%,气候变化和大气CO2升高的施肥效应的贡献为77%。源区植被蒸散量(ET)呈增加趋势,倾向率为2.54 mm a-1,水分利用效率(WUE)亦提高,平均相对上升率为5.1% a-1。GPP、ET和WUE年总量及其变化率在海拔4200 m以下随高度上升而减小,之后变化趋缓。源区植被绿度和径流系数与当年和前一年降水呈显著正相关,反映降水蓄存于植物根层土壤的遗留效应。蒸散增强在一定程度上有利于源区地表—大气之间的水分再循环,帮助缓解生态恢复引起的产水能力下降,促进降水—植被—径流之间的良性互馈关系的形成。揭示水文对气候变化和植被恢复的响应和互馈机制,可为生态恢复措施对源区水源涵养功能的影响及效应的定量评估提供科学依据。  相似文献   

5.
全球气候变化及人类活动深刻影响了区域水文过程,进行水沙变化归因识别对流域生态保护和高质量发展尤为重要。基于Budyko假设和分形理论,采用弹性系数法,对北洛河流域上(丘陵沟壑区)、中(土石山林—高塬沟壑区)、下游(渭北旱塬农区)3种不同地貌和植被类型区1959—2019年的水、沙通量变化进行归因分析。结果表明,北洛河上、中、下游径流量均显著减少,由20世纪60年代的35 mm、32 mm、34 mm,减少到21世纪10年代的19 mm、24 mm、6 mm,60 a减少率分别为0.3 mm a-1、0.2 mm a-1、0.4 mm a-1。上游输沙量极显著减少,中游降低趋势不显著,下游显著减少,由20世纪60年代的99×106 t、8×106 t、3×106 t,减少到21世纪10年代的10×106 t、3×106 t、0.3×106 t,60 a减少率分别为1.5×106 t a-1、0.04×106 t a-1、0.1×106 t a-1。20世纪70年代以来,上游径流变化逐渐受人类活动影响,且影响程度逐渐增强,21世纪10年代人类活动贡献率达66.3%;气候变化是中游径流变化的主控因子,21世纪10年代降雨和潜在蒸散发的贡献率分别为77.0%和20.2%;下游径流减少主要为人类活动影响,21世纪10年代其贡献率为64.3%。对比20世纪60年代流域输沙量变化始终受人类活动主导,21世纪10年代人类活动对上、中、下游输沙量减少的贡献率分别为80.7%、59.2%和92.7%。上游人类活动对输沙量减少的贡献中,退耕还林等沟坡措施和沟道工程措施分别为39.0%、42.7%,中、下游人类活动贡献的估算结果反映出高植被覆盖区和农区汲水灌溉对区域水、沙的影响特征。  相似文献   

6.
基于高分辨率格点数据的1961-2013年青藏高原雪雨比变化   总被引:1,自引:0,他引:1  
基于国家气象信息中心发布的1961-2013年全国0.5° × 0.5°逐日降水量和日平均气温格点数据集以及气象站点日降水量和日平均气温实测资料,采用森斜率,M-K突变分析,IDW空间插值以及小波分析等方法,对近53年来青藏高原的降水量,降雨量,降雪量以及雪雨比的时空变化,突变和周期等特征进行了分析.结果表明:① 从时间尺度上看,青藏高原的降水量和降雨量总体呈增加趋势,增加幅度分别为0.6 mm·a-1(p < 0.05)和1.3 mm·a-1(p < 0.001);而降雪量和雪雨比均呈下降趋势,下降幅度分别为0.6 mm·a-1(p < 0.01)和0.5% a-1(p < 0.001).② 从空间分布上看,青藏高原的大部分地区降水量和降雨量呈增加趋势,而降雪量却呈现减少趋势.因此,雪雨比在青藏高原相应呈现减少趋势.③ 突变和周期分析表明,青藏高原降水量,降雨量,降雪量和雪雨比的突变时间分别出现在2005,2004,1996和1998年左右,而周期变化集中为5年,10年,16年,20年左右.④ 青藏高原降水量倾向率和降雨量倾向率均随海拔的升高呈现出先降低后升高的变化趋势,降雪量倾向率随海拔的升高而降低,雪雨比倾向率随海拔的升高呈微弱的下降趋势.  相似文献   

7.
为了探究森林植物叶片功能属性的地理格局及其影响因素,在2013年7-8月期间系统调查了中国东部南北样带9个森林生态系统的847种植物的叶片面积(LA)、叶片厚度(LT)、比叶面积(SLA)和叶片干物质含量(LDMC),并结合群落结构计算了各属性的群落加权平均值(LACWM、SLACWM、LTCWM和LDMCCWM)。结果显示:847种植物的LA、LT、SLA和LDMC的平均值(±标准误)分别为2860.01±135.37 mm2、0.17±0.003 mm、20.15±0.43 m2 kg-1和 316.73±3.81 mg g-1。SLA和LDMC表现出了明显的纬度格局,随着纬度增加,SLA逐渐增加,LDMC降低;然而,LA和LT沿纬度的变化趋势不明显(R2 = 0.02 ~ 0.06)。不同植物类型之间叶片属性的差异是影响LA、LT、SLA和LDMC空间变化的主要因素;叶片功能属性的群落加权值表现出了更加明显的纬度分布格局(R2 = 0.46 ~ 0.71),这主要受到了气候因素和土壤N含量的影响。本文结果完善了中国区域森林生态系统叶片功能属性地理分布的数据库,同时强调了在研究植物属性空间格局时,考虑群落结构在尺度扩展中的重要性。  相似文献   

8.
基于WaTEM/SEDEM模型的沂河流域土壤侵蚀产沙模拟   总被引:1,自引:0,他引:1  
基于WaTEM/SEDEM模型,结合临沂水文站和角沂水文站的输沙数据对模型进行校正和验证,分析模拟1975—2015年沂河流域侵蚀产沙的时空变化特征,并进一步研究降水、地形位和土地利用变化对流域侵蚀产沙的影响。结果表明:① 沂河流域输沙能力系数Ktc-low和Ktc-high在40 m和150 m组合下效果最优,模型在沂河流域具有较好的适用性。② 1975—2015年,沂河流域主要以侵蚀为主,微度侵蚀所占面积最大,其次是剧烈侵蚀,沉积主要分布在河谷处;流域侵蚀强度呈现先增加后减少的趋势,侵蚀模数由1975年的30.92 t·hm-2·a-1增加至1995年的49.32 t·hm-2·a-1再下降至2015年的29.60 t·hm-2·a-1;各县(区)平均侵蚀模数为沂水县>费县>沂南县>沂源县>蒙阴县>平邑县>兰山区。③ 沂河流域土壤侵蚀产沙强度的变化是降水、地形、土地利用等综合作用的结果。1975—2015年,流域降雨侵蚀力呈现先降低后升高又降低的变化趋势,各县(区)平均降雨侵蚀力为费县>兰山区>沂南县>蒙阴县>平邑县>沂水县>沂源县,降雨侵蚀力时空变化与流域侵蚀产沙强度时空变化并不完全一致;地形位等级空间分布与流域侵蚀产沙强度空间分布基本一致,侵蚀产沙的优势地形位区间是4~6级,即高程75~428 m,坡度5°~39°;耕地和林地的转化是土壤侵蚀强度转化最主要的原因,林地转化为耕地使侵蚀强度面积升高3389.97 hm2·a-1,耕地转林地则使侵蚀强度面积降低2216.65 hm2·a-1,草地与其他土地利用类型的转化对流域侵蚀强度影响较小。该研究可为区域土地利用方式调整和水土流失调控提供参考。  相似文献   

9.
湖冰物候变化特征是全球气候变化过程的重要指示器。通过长时间序列MODIS数据、Landsat数据提取的湖泊数据集,综合分析了2000—2019年新疆大型湖泊湖冰物候的变化特征。结果表明:(1) 近20 a新疆大型湖泊的开始冻结日呈现提前和推迟2种变化趋势,开始冻结日呈现推迟趋势的湖泊分别为博斯腾湖、赛里木湖、艾比湖、吉力湖、乌伦古湖、萨利吉勒干南库勒湖和鲸鱼湖,且大部分湖泊的开始冻结日推迟趋势在0.51~1.53 d·a-1之间;开始冻结日呈现提前趋势的湖泊有3个,分别为阿牙克库木湖(变化趋势为-1.04 d·a-1)、阿克赛钦湖(变化趋势为-0.41 d·a-1)、阿其克库勒湖(-0.31 d·a-1)。(2) 湖冰完全覆盖期是重要的湖冰参数,湖冰覆盖期的延长或者缩短能够直接表示区域气候变化过程,新疆大部分湖泊湖冰覆盖期表现为缩短趋势,其中分布在新疆中北部的艾比湖、吉力湖和博斯腾湖等湖泊的湖冰覆盖期缩短较为明显,变化趋势分别为-1.76 d·a-1、-2.13 d·a-1和-0.81 d·a-1;冰完全覆盖期延长的湖泊有3个,分别为阿牙克库木湖、阿其克库勒湖和鲸鱼湖,变化趋势分别为3.51 d·a-1、1.54 d·a-1和1.37 d·a-1,这些湖泊均匀分布在昆仑山高原北翼。(3) 新疆大型湖泊湖冰物候变化特征是受其自身条件(湖泊形态因子、湖泊面积等)及气候变化(气温、降水量等)等多种因素共同作用的结果。本研究探讨了气候变化环境下的新疆大型湖泊湖冰物候的冻融趋势及其变化模式,同时应用不同遥感数据和研究方法识别了湖冰,证实了MODIS数据反演湖冰物候的可行性。  相似文献   

10.
中国北方干湿过渡区生态系统生产力的气候变化风险评估   总被引:2,自引:0,他引:2  
气候变化风险是人类社会发展面临的严峻挑战,评估识别对气候波动响应敏感且复杂的干湿过渡区生态系统所面临的气候变化风险是一个重要科学问题,对区域气候治理和风险管理具有科学意义。本文利用参与耦合模式比较计划第五阶段(CMIP5)的多气候模式多情景数据,通过改进和验证Lund-Potsdam-Jena(LPJ)动态全球植被模型,辨识未来不同时段生态系统生产力的气候变化风险等级及其时空分布,明晰气候因子对净初级生产力(NPP)风险的作用特征。结果表明:未来中远期干湿过渡区生态系统生产力面临的气候变化风险面积将可能扩大,风险等级将可能提升,高排放情景下的风险更加严重,主要表现为NPP距平为负,且仍有继续下降的趋势。尤其是典型浓度路径(RCP8.5)情景下,81.85%的地区将可能面临气候变化风险,54.71%将达到高风险。2071—2099年,RCP8.5高风险区的NPP距平将达到(-96.00±46.95) gC m-2 a-1,NPP变化速率将达到(-3.56±3.40) gC m-2 a-1。干湿过渡区东部平原和内蒙古东部草原区预估将可能成为风险主要集中区域,这些地区未来的植被生长将可能受到气候变化的不利影响,增温加剧和干旱程度加重可能是未来气候变化风险的重要驱动因素。  相似文献   

11.
气候变化对不同气候区流域年径流影响的识别   总被引:1,自引:1,他引:0  
气候变化对流域径流的影响显著,但不同流域径流对各气候因子敏感性不同,具有明显的空间分异性。本文以位于半湿润、湿润地区的松花江、子牙河以及西苕溪流域为例,基于Budyko 水热平衡经验模型,采用归因分析方法分离了气象要素趋势性变化对年径流和潜在蒸发变化率的贡献与差异性。结果表明:1960-2008年,在上述3个流域中,降水趋势性变化对年径流变化的贡献比潜在蒸发大。松花江和子牙河流域各气象要素趋势性变化对潜在蒸发变化率的贡献排序为:温度>风速>水汽压>日照时数,而西苕溪流域为:温度>日照时数>风速>水汽压。在气候要素共同作用下,松花江和子牙河流域平均年径流分别以0.48和1.51 mm a-2的速率减少,而西苕溪流域年径流则以1.42 mm a-2的速率增加。所得结果加深了气候变化对径流影响机制和程度的认识,可作为流域水资源适应性管理的科学依据。  相似文献   

12.
基于格点数据的1961-2012年祁连山面雨量特征分析   总被引:1,自引:0,他引:1  
基于国家气象信息中心发布的全国0.5°×0.5°逐日降水量数据集和气象站点日降水量实测资料,利用主成分分析(PCA)和回归分析,研究了1961-2012年祁连山面雨量年际变化以及面雨量距平与干旱累计强度的关系。结果表明,该套格点数据能够很好地反映出祁连山及其周边区域降水的时空分布格局,山区降水量大于平原区降水量,山区东段降水量大于西段降水量。1961-2012年祁连山面雨量的多年平均值为724.9×108 m3,其中,春、夏、秋、冬的面雨量分别为118.9×108 m3、469.4×108 m3、122.5×108 m3、14.1×108 m3,夏季面雨量最大,占全年的64.76%。除春季外,其他季节面雨量都呈现逐年增加趋势,夏季增幅最大,平均每年增加1.7×108 m3。山区面雨量与祁连山及其周边区域的干湿程度表现出较好的相关性,干旱累计强度与面雨量表现出负相关性,山区面雨量较多时这一地区的干旱强度也较弱。  相似文献   

13.
流域生态基流是河流生态系统健康稳定的关键,以新疆尼雅河流域为研究区域,根据民丰县气象站1958—2018年的气象数据与尼雅河4个水文监测断面1978—2018年的水文数据,运用趋势拟合、Tennant法、相关性分析和回归模型等分析流域气候变化、确定生态基流并探究其时空分异与保证率变化,揭示生态基流对气候变化的响应。结果表明:61 a来流域气温以0.22 ℃·(10a)-1的速度增加,年降水量以3.8 mm·(10a)-1的速度增加;尼雅水库、八一八渠首、尼雅水文站和尼雅渠首的年生态基流推荐值分别为:1.989 m3·s-1、2.188 m3·s-1、1.755 m3·s-1、1.702 m3·s-1;生态基流年际最大值出现在2010年,最小值在1980年,年内最大值在7月,最小值在1月或12月;空间上表现为上游高下游低,以八一八渠首处最高,尼雅渠首处最低;各站多年平均生态基流保证率分别为:50%、45%、50%、45%,且表现出汛期明显高于非汛期;逐年、逐月生态基流与气温、降水量均在0.01水平上显著相关,但在春夏季对气温敏感,秋冬季对降水量敏感,各水文监测断面的回归模型耦合效果相似,流域整体回归方程R2=0.365,且生态基流对气候变化响应具有整体性和衰减性。研究结果可为尼雅河流域生态调水和水生态修复提供参考。  相似文献   

14.
利用遥感数据和气象观测资料探索气候因子对区域植被变化的驱动作用具有重要意义。以1980-2012年气象数据和2000-2012年MODIS-NDVI数据为数据源,借助线性回归和相关分析分别分析了青海和西藏两个地区21世纪以来气候变化对青藏高寒草地的影响机制。结果表明:(1)1980-2012年,青海和西藏地区均呈暖湿化的发展趋势。但21世纪以来,西藏地区降水呈不显著的减少趋势;整个青藏高原中部和西部地区增温趋势明显(>0.05 ℃·a-1)。(2)在年际尺度(2000- 2012年)上,青海地区NDVI呈显著增加的趋势,增长率为0.003·a-1(P<0.05);西藏地区NDVI无变化趋势,区域尺度统计中植被退化与改善相互抵消。在空间上,青藏高原东北部地区NDVI呈良性趋势,部分区域增长斜率超过0.01·a-1。青藏高原南部地区NDVI呈变差趋势,变化斜率为0.008·a-1。(3)区域上的相关分析显示,在青海地区,降水量的增加和温度的升高共同促进了该区域植被的良性发展趋势;在西藏地区,降水量的减少和温度的升高可能是南部地区植被变差的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号