首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Knowledge of Himalayan cryosphere seems to be an outstanding requirement for assessment of glacier storage, water balance analysis, planning of water resources and flood hazard monitoring. A stepwise approach through mapping glaciers and glacial lakes using satellite remote sensing data and investigating potential glacial lake outburst flood (GLOF) hazards was adopted for the three Hindukush, Karakoram and Himalayan (HKH) ranges of Pakistan. The findings of the study revealed 5,218 glaciers in the cryosphere of HKH ranges. The cumulative glacial cover of over 15,000 km2 contains ice reserves of about 2,738 km3. About 46 % of the Karakoram glaciers are contributing 77 % to the total glacial cover and 87 % to the cumulative ice reserves of the country. The 33 % Himalayan glaciers and 21 % Hindukush glaciers contribute only 3 and 10 % ice reserves, respectively. Among 2,420 glacial lakes identified in the three HKH ranges, 52 were classified as critical lakes that can pose GLOF hazard for the downstream communities. Most of the potential hazardous lakes lie in the Karakoram and Himalayan ranges, the monitoring of which is crucial to reduce high risk of future floods hazard in this fragile mountain ecosystem of the Himalayan region.  相似文献   

2.
近20a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析   总被引:30,自引:11,他引:19  
车涛  晋锐  李新  吴立宗 《冰川冻土》2004,26(4):397-402
全球气候变暖,青藏高原冰川普遍处于退缩趋势,由此引发的冰湖溃决洪水的灾害也随之增加.通过对2000/2001年度卫星遥感数据解译结果和1987年国际联合考察的朋曲流域冰湖溃决洪水结果的分析,研究了近20a来朋曲流域内冰湖的变化.结果显示,该流域中的冰湖数量有减少,但冰湖的面积却在增加,这是同期全球气候变暖的结果.在提供了冰湖编目数据的基础上,识别了有潜在危险的冰湖,为冰湖溃决洪水早期预警系统提供了科学依据.  相似文献   

3.
2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害   总被引:11,自引:3,他引:8  
冰湖溃决洪水(泥石流)是西藏自治区主要自然灾害之一. 2013年7月5日,西藏自治区嘉黎县忠玉乡发生“7.5”冰湖溃决洪水灾害事件,导致人员失踪,房屋被毁,桥梁、道路等基础设施遭到严重破坏,直接经济损失高达2.7亿元. 基于不同时间段地形图和遥感影像资料,利用地理信息技术,发现导致“7.5”洪灾的溃决冰湖为然则日阿错. 该冰湖溃决的直接诱因可能是雪崩和冰崩的共同作用,溃决前的强降水过程及气温的快速上升是其间接原因,而冰湖长期稳定的扩张导致水量聚集是其溃决并造成巨大灾害的基础. 然则日阿错溃决后形成2个冰湖,面积分别为0.25 km2和0.01 km2,再次发生溃决的概率极小. 这次溃决洪水和泥石流灾害事件阻塞了尼都藏布的罗琼沟及衣布沟,并形成2处面积分别为0.33 km2和0.13 km2堰塞湖,且存在溃决风险,在今后一段时间内应加强监测工作与排险工程实施.  相似文献   

4.
Debris-covered glaciers are common in the Himalayas and play a key role in understanding future regional water availability and management. Previous studies of regional glacial changes have often neglected debris-covered glaciers or have mixed them with debris-free glaciers. In this study, we generated a new glacier data set that includes debris-covered and debris-free glaciers to study the glacial surface area change in the Koshi River Basin in the central Himalayas. Long time-series Landsat data were used to extract the glacier boundaries using automatic and manual classification methods. The glacial area decreased by 10.4% from 1975 to 2010 at a rate of 0.30% a?1, with accelerated melting since 2000 (0.47% a?1). Small glaciers melted faster than large glaciers. In terms of distinctive glacier types, debris-free glaciers shrank at a rate of 0.45% a?1, faster than debris-covered glaciers (0.18% a?1), while debris-covered glaciers larger than 5.0 km2 retreated at a rate faster than debris-free glaciers of the same-sized group. We also studied the potential interactions between 222 supraglacial lakes and debris-covered glaciers. Debris-covered glaciers with glacial lakes melt faster than glaciers without lakes. This study can improve our understanding of the differences in the changes between debris-covered and debris-free glaciers in the central Himalayas and help evaluate water resource changes in the Himalayas.  相似文献   

5.
余斌  何元勋  刘秧 《地球科学》2022,47(6):1999-2014
世界范围内的冰碛湖溃决往往造成巨大经济损失和人员伤亡.通过分析不含死冰的冰碛坝溃决机理和相关影响因素,采用控制变量法,以喜马拉雅山区21个溃决冰碛湖及其周围未溃决冰碛湖为研究对象,采用6个无量纲影响因子可以合理评估喜马拉雅山区和加拿大哥伦比亚省西南地区以及美国西北部地区的冰湖溃决易发性,但喜马拉雅山区不同级别判别阈值较加拿大哥伦比亚省西南地区偏大.危险冰体坡度因子、危险冰体温度因子、冰川坡向因子、危险冰体与冰碛湖体积因子、危险冰体与冰湖的运动因子、冰碛坝坡度因子是影响不含死冰冰碛湖溃决的主要因子,由这些影响因子构成的冰碛湖溃决易发性定量评价方法,可以用于其他地区的冰碛湖溃决易发性评价.   相似文献   

6.
Glacial lake outburst flood (GLOF) is a powerful natural phenomenon that is very active in the Karakoram and Himalayas. This paper presents a case study from Gupis Tehsil in northern areas of Pakistan that is exposed to GLOFs from nine different glacial lakes in its upper catchment areas. Khukush Lake being the largest of all the glacial lakes has been studied and a flood attenuation model has been created for the whole Gupis Tehsil. This lake covers almost 2.2 km2 of surface area, and its calculated volume is 2.6 × 104 m3. In case of its outburst, the peak flow discharge is calculated to be 7,642 m3/s. The catchment area which contributes water and debris to the lake is 170 km2. This lake is dammed by a glacial moraine, which is not strong enough to sustain the pressure for a longer period of time. Other factors that are reducing the reliability of the dam are the secondary hazards which are in direct contact with the lake, and in case of their reactivation, they can put severe impacts on the dam. There are eight potential sites of the snow avalanche activity where debris along with snow may fall directly into the lake producing a strong wave. This strong wave of water will increase the pressure on the dam and ultimately will increase the probability for its outburst. The presense of water springs towards the downstream side of the natural dam also indicate the presence of hidden channels passing through the dam which may weaken the shear strength of the dam. Almost 24 villages settled along either sides of the Gupis River are critically studied for the expected flood from Khukush Lake. With few exceptions, almost 20–25 % area of all the villages will be affected from this flood.  相似文献   

7.
冰湖溃决洪水(Glacial lake outburst flood,简称GLOF)灾害是冰川区最常见、危害最大的灾害类型之一,历来是国内外学者研究的关键科学问题。在全球变暖的大背景下,冰川退缩加剧,其下游冰湖扩张快速,湖面升高,溃决风险提高。青藏高原尤其是东南部地区孕育着大量的冰湖,在过去的几十年间,冰湖溃决洪水威胁着当地人民的生产生活。基于LANDSAT遥感影像,本文获取了青藏高原东南部雅弄冰川和来古冰湖1986年、1990年、1994年、1997年、2000年、2003年、2005年、2011年、2013年和2017年共10期湖面面积,并结合实地测量的冰湖水深资料,计算了冰湖对应年份的储水量,建立冰湖面积与储水量变化序列;结合野外调查从冰湖面积与水量变化趋势和突发事件两方面探讨冰湖溃决可能性;利用BREACH模型和SMPDBK模型估算和模拟来古冰湖溃决洪水,做灾害预警分析。结果表明,1986~2017年冰湖上湖变化不大,而来谷下湖处于持续扩张中,面积由1986年的1.151±0.070 km^2扩张至2017年的3.148±0.097 km^2,水量由0.645×10^8 m^3增加至2.143×10^8 m^3,雅弄冰川在1986~2013年持续后退,在2013~2017年突然前进;经讨论其溃决风险得出冰川滑动入湖导致湖水瞬时涌出从而造成溃坝的可能性较高;利用BREACH模型及SMPDBK模型对来古冰湖溃决洪水模拟结果表明,当来古下湖湖水受冰体挤压抬升发生溃决时,溃决洪水将严重威胁然乌镇及其上游居民的生命和财物安全。  相似文献   

8.
Glacier lakes pose threat to downstream settlements and infrastructure. In recent decades the number and area of lakes have been growing at an accelerating rate due to worldwide glacier shrinkage. In the Russian Caucasus this process is understudied. We present results obtained during a 12-year (1999–2010) continuous field monitoring of the Bashkara proglacial lakes group, which we identified as the place with the highest GLOF risk in the region. Recession of the parent Bashkara Glacier was the main driver of the rapid expansion of the lower Lake Lapa. The upper Lake Bashkara has not been enlarging, but its water level has shown significant inter- and intra-annual fluctuations. The lake outburst probability has increased in recent years, and in 2008 we observed surface overflow over the moraine dam. Taking into account that in the late 1950s lake outbursts at this site led to large-scale glacial debris flows, we have simulated a potential outburst using River and FLO-2D software and carried out hazard zonation. An early warning system has been designed and established at Lake Bashkara, and measures to mitigate risk have been proposed. Rapid change of proglacial lakes requires regular monitoring in ‘hot spot’ areas where the GLOF hazard is high and is dynamically changing.  相似文献   

9.
Geospatial studies carried out in two major proglacial lakes of Samudra Tapu and Gepang Gath (Chandra Basin, Western Himalaya) showed substantial expansion in their area and volume over the last four decades (1971–2014). The linear and areal expansions for the lakes Samudra Tapu and Gepang Gath were 1889, 1509 m and 1, 0.6 km2, respectively. The results show that increased melting of the feeder glaciers over this period is major contributor to expand the volumes approximately 20 times of both the lakes Samudra Tapu and Gepang Gath. This expansion of lakes volume of Samudra Tapu and Gepang Gath from 3.4 × 106 to 67.7 × 106 and 1.5 × 106 to 27.5 × 106 m3, respectively, is quite significance in terms of hazards generated from glacial lake outburst floods (GLOF). This kind of climate change induced increase in the rate of glacial melting is a cause of concern, as the Himalaya Mountains may turn out to be vulnerable to natural hazards like GLOF.  相似文献   

10.
One of the most far-reaching glacier-related hazards in the Tian Shan Mountains of Kyrgyzstan is glacial lake outburst floods (GLOFs) and related debris flows. An improved understanding of the formation and evolution of glacial lakes and debris flow susceptibility is therefore essential to assess and mitigate potential hazards and risks. Non-stationary glacier lakes may fill periodically and quickly; the potential for them to outburst increases as water volume may change dramatically over very short periods of time. After the outburst or drainage of a lake, the entire process may start again, and thus these non-stationary lakes are of particular importance in the region. In this work, the Teztor lake complex, located in Northern Kyrgyzstan, was selected for the analysis of outburst mechanisms of non-stationary glacial lakes, their formation, as well as the triggering of flows and development of debris flows and floods downstream of the lakes. The different Teztor lakes are filled with water periodically, and according to field observations, they tend to outburst every 9–10 years on average. The most important event in the area dates back to 1953, and another important event occurred on July 31, 2012. Other smaller outbursts have been recorded as well. Our study shows that the recent GLOF in 2012 was caused by a combination of intense precipitation during the days preceding the event and a rapid rise in air temperatures. Analyses of features in the entrainment and depositional zones point to a total debris flow volume of about 200,000 m3, with discharge ranging from 145 to 340 m3 s?1 and flow velocities between 5 and 7 m s?1. Results of this study are key for a better design of sound river corridor planning and for the assessment and mitigation of potential GLOF hazards and risks in the region.  相似文献   

11.
冰湖溃决泥石流的形成、演化与减灾对策   总被引:14,自引:0,他引:14       下载免费PDF全文
本文分析了主要由冰滑坡和冰崩入湖导致的冰湖溃决的机理和条件.进而,从气候条件、水文条件、终碛堤、冰湖规模、冰滑坡、沟床特征和固体物质补给等方面分析了冰湖溃决泥石流的形成条件和特点,归纳出冰湖溃决泥石流沿程演化的6种模式:溃决洪水-稀性泥石流、溃决洪水-黏性泥石流、溃决洪水-稀性泥石流-黏性泥石流、溃决洪水-黏性泥石流-稀性泥石流、溃决洪水-稀性泥石流-黏性泥石流-稀性泥石流和溃决洪水-黏性泥石流-稀性泥石流-洪水.针对冰湖溃决泥石流突发性强、频度低、洪峰高、流量大、流量过程暴涨暴落、破坏力强和灾害波及范围广等特点,提出了7点减灾对策.  相似文献   

12.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
At least six devastating glacial floods occurred in the Karambar valley in the 19th and 20th century. Previously mainly the Karambar glacier was considered as the origin of these outburst floods. However, in this project more detailed investigations revealed that up to eight more tributary glaciers could have dammed the Karambar valley in historical and prehistorical times. The ice-dammed lakes reached an approximate length of up to about 5 km and more. The dense concentration of the glacier dams along a horizontal distance of only 40 km results in a complex interfingering of lake basins and flooded valley sections. In the individual flood events were probably involved almost synchronously the drainage of at least two lakes resulting in a lake outburst cascade. The Karambar case study highlights the characteristic geomorphological landforms of the glacier dams, their lake basins and the geomorphological impact of the outburst floods. The abundant occurrence of unconsolidated sediments mantling the valley flanks caused a high sediment load and enhanced the erosion potential of the flood. The erosion cliffs of sediment cones, up to 100 m high, wash limits along the slopes and longitudinal bars in the gravel floors are main characteristics of the flood landscape. Secondary temporary lake formations (back water ponding) during the flood events in consequence of blockages of the ice- and sediment-loaden flood masses occurred at many locations in the narrower valley sections and lasted for several days. Additionally, debris flows in-between the glacier dams have dammed temporarily the Karambar valley. On the basis of losses of settlement area and eye-witness reports, the extent, erosion rates and characteristics of the 1905 flood event could be reconstructed. In order to warn the villagers living downstream, the Karambar people established an early warning fire system (Puberanch) from Sokther Rabot to Gilgit which was operated until 1905. The reconstructed Karambar flood chronology represents one of the longest records for this region and provides also information on historical and recent glacier oscillations, especially on exceptional glacier advances. At present, the Chateboi glacier seals the Karambar valley over a distance of 4 km. An outburst flood would have disastrous impacts to the human infrastructure as the settlement areas expanded to the flood plains in the last decades.  相似文献   

14.
    
At least six devastating glacial floods occurred in the Karambar valley in the 19th and 20th century. Previously mainly the Karambar glacier was considered as the origin of these outburst floods. However, in this project more detailed investigations revealed that up to eight more tributary glaciers could have dammed the Karambar valley in historical and prehistorical times. The ice-dammed lakes reached an approximate length of up to about 5 km and more. The dense concentration of the glacier dams along a horizontal distance of only 40 km results in a complex interfingering of lake basins and flooded valley sections. In the individual flood events were probably involved almost synchronously the drainage of at least two lakes resulting in a lake outburst cascade. The Karambar case study highlights the characteristic geomorphological landforms of the glacier dams, their lake basins and the geomorphological impact of the outburst floods. The abundant occurrence of unconsolidated sediments mantling the valley flanks caused a high sediment load and enhanced the erosion potential of the flood. The erosion cliffs of sediment cones, up to 100 m high, wash limits along the slopes and longitudinal bars in the gravel floors are main characteristics of the flood landscape. Secondary temporary lake formations (back water ponding) during the flood events in consequence of blockages of the ice- and sediment-loaden flood masses occurred at many locations in the narrower valley sections and lasted for several days. Additionally, debris flows in-between the glacier dams have dammed temporarily the Karambar valley. On the basis of losses of settlement area and eye-witness reports, the extent, erosion rates and characteristics of the 1905 flood event could be reconstructed. In order to warn the villagers living downstream, the Karambar people established an early warning fire system (Puberanch) from Sokther Rabot to Gilgit which was operated until 1905. The reconstructed Karambar flood chronology represents one of the longest records for this region and provides also information on historical and recent glacier oscillations, especially on exceptional glacier advances. At present, the Chateboi glacier seals the Karambar valley over a distance of 4 km. An outburst flood would have disastrous impacts to the human infrastructure as the settlement areas expanded to the flood plains in the last decades.  相似文献   

15.
我国西藏地区冰湖溃决灾害综述   总被引:15,自引:4,他引:11  
冰湖溃决是我国西藏地区典型的地质灾害类型之一,具有突发性强、规模大、破坏力强和危害范围广等特点,往往造成下游地区遭受惨重的生命财产损失。冰湖溃决成因特征是形成机制、早期识别和危险性评价等冰湖溃决研究的基础,受客观条件限制,我国西藏冰湖溃决的基础调查工作存在资料分散甚至缺失的局限性。为解决这个难题,通过资料收集、遥感解译和野外调查等技术手段,重新梳理了我国西藏地区的冰湖溃决事件及基本特征,共调查出33个冰湖37次溃决事件,其中2个为冰川阻塞湖(简称冰川湖),划定了冰湖溃决高发地带的地理分布位置,分析出冰崩/冰滑坡、埋藏冰融化、冰川融水、强降水、泥石流和上游冰湖溃决洪水6种诱发原因,为我国西藏冰湖溃决研究提供基础调查成果和参考依据。  相似文献   

16.
Region warming and the resulting ongoing deglaciation have led to the formation of new glacial lakes and expansion of existing glacial lakes. For giving an overview of the distribution and expansion of glacial lakes in the Koshi River Basin (KRB) between the Central China and Nepal Himalayas in the recent 10 years, this paper aimed to analyze and assess recent spatial variability of glacial lake changes in the KRB, Central Himalayas using two inventory data of glacial lake in 2001 and 2010 in Nepal and Landsat TM/ETM+ data for the 1990s, 2000 and 2009 on the Chinese section of the KRB. The datasets show that there are 1,203 glacial lakes with a total area of 118.54 km2 in the KRB in 2009, in which 599 lakes are mapped in the Nepalese section of the KRB with a total of 25.92 km2, and 604 lakes in the Chinese section of the KRB with a total area of 92.62 km2. From 2000 to 2009, the total number of glacial lakes decreased from 1,668 to 1,203 with a reduction of 45.86 % in the KRB, whereas the total lake areas expanded by 10.60 % (i.e. 0.72 km2/a), from 111.35 to 118.54 km2 between 2000, 2001 and 2009, 2010. Especially, 17 lakes are identified as potentially dangerous glacial lakes (PDGLs) by International Centre for Integrated Mountain Development (ICIMOD) on the Nepalese section of the KRB in 2009. In the same period, 23 PDGLs are also identified on the Chinese section of the KRB and the total area increased by 77.46 % (i.e. 0.37 km2/a) from 1990 to 2010 and the expansion rate is significantly higher than 39 % (0.19 km2/a) of non-PDGLs. Therefore, there is a need for promoting the awareness of the hazard potential of glacier lakes to support proper planning of mitigation and adaptation strategies in this context.  相似文献   

17.
末次冰期以来,气候变暖导致全球高山地区的冰川环境变化剧烈,冰碛湖稳定性降低导致溃决频率增加,成为中国、尼泊尔、俄罗斯、秘鲁等10多个国家和地区频繁发生的冰川灾害类型之一。冰碛湖溃决诱发形成的洪水和泥石流,由于规模巨大、成灾速度快和波及范围广等特点,造成下游地区的基础设施和生命财产遭受惨重损失。本文通过对国内外冰碛湖溃决事件、溃决诱因、溃决模式和溃决洪水特征4个方面研究现状和发展现状的梳理和分析,总结经验和思路,从而为冰碛湖溃决研究和评价提供借鉴和参考。  相似文献   

18.
李尧  崔一飞  李振洪  傅旭东 《地球科学》2022,47(6):1969-1984
川藏交通廊道沿线山高谷深,地层岩性多变,新构造运动活跃,气候恶劣复杂,导致滑坡、崩塌、泥石流、冰湖溃决洪水等灾害极其发育,对铁路施工及运营带来严重影响.林芝-波密段就是典型地质灾害高发区域,常年受到冰川泥石流的影响,是川藏交通廊道重大灾害防治的难点区段.虽然目前在单沟尺度上对冰川泥石流的形成条件、影响因素、物源性质取得了一定的认识,但对于川藏交通廊道沿线不同类型的冰川泥石流诱发因素、区域发展演化规律及灾变指标的研究还较为初步,尚未构建完善的监测预警体系.借助多源长时序遥感影像、气象监测数据,结合野外实地验证和历史数据分析发现:川藏交通廊道周边区域冰川泥石流沟谷共99条,主要分布于恰青冰川-易贡乡、加拉贝垒-南迦巴瓦峰和古乡沟-嘎隆寺冰川一带;过去40年冰川经历了复杂的流动速度变化,表现为较小高海拔悬冰川活动性增强,大型沟谷冰川活动性减弱;自1973年以来,研究区冰川泥石流呈现频率增高、规模增大的特征.此外,从冰川泥石流发育沟道比降来看,发生高陡地形的滑坡、冰-岩崩诱发的泥石流频率增加.未来,冰川持续退缩,促使冰川源区冰瀑消失,发育更大规模的悬冰川,会增加这类冰川泥石流的风险;冰川泥石流形成及演化过程具有明显的灾变指标,如悬冰川裂隙密度增加、冰川速度增强、冰湖面积快速增加等.因此,基于以上认识,建议针对不同类型的冰川泥石流地建立完善的监测预警指标,并提出了融合卫星、航空遥感平台,气象、水文地面监测平台,地震动监测平台的冰川泥石流“空-天-地”立体监测框架,针对不同类型冰川泥石流进行灾变信息监测与预警判识,为川藏交通廊道安全施工运营提供技术参考.   相似文献   

19.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

20.

Glacial lake outburst floods (GLOFs) are among the most serious cryospheric hazards for mountain communities. Multiple studies have predicted the potential risks posed by rapidly expanding glacial lakes in the Sagarmatha (Mt. Everest) National Park and Buffer Zone of Nepal. People’s perceptions of such cryospheric hazards can influence their actions, beliefs, and responses to those hazards and associated risks. This study provides a systematic approach that combines household survey data with ethnography to analyze people’s perceptions of GLOF risks and the socioeconomic and cultural factors influencing their perceptions. A statistical logit model of household data showed a significant positive correlation between the perceptions of GLOF risks and livelihood sources, mainly tourism. Risk perceptions are also influenced by spatial proximity to glacial lakes and whether a village is in potential flood zones. The 2016 emergency remediation work implemented in the Imja Tsho (glacial lake) has served as a cognitive fix, especially in the low-lying settlements. Much of uncertainty and confusions related GLOF risks among locals can be attributed to a disconnect between how scientific information is communicated to the local communities and how government climate change policies have been limited to awareness campaigns and emergency remediation efforts. A sustainable partnership of scientists, policymakers, and local communities is urgently needed to build a science-driven, community-based initiative that focuses not just in addressing a single GLOF threat but develops on a comprehensive cryospheric risk management plan and considers opportunities and challenges of tourism in the local climate adaptation policies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号