首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. IntroductionThe Tarim basin, one of the most developed and important areas of marine Cretaceous-Tertiary in China except for south Tibet, is very rich in oil and gas, such as Kekeya oilfield in southwestern Tarim and Kela2 gas field in northeastern Tarim. Because of the expansion, subduction of the oceanic crust of the Tethys and the collision between the India plate and the Eurasia plate during the Cretaceous-Tertiary, the Tethys transgressed into the Tarim basin from west to east fr…  相似文献   

2.
3.
《International Geology Review》2012,54(12):1504-1520
This study presents new data relating to the tectonic evolution of the Zhonggang ocean island, within the Mesozoic Banggongco–Nujiang suture zone of northern Tibet, and discusses the implications of these data for the evolution of this region. Thirteen basalt and ten gabbro samples were collected from a sampling transect through this area; these samples have light rare earth element (LREE)-enriched chondrite-normalized REE patterns, and are enriched in highly incompatible elements, yielding primitive-mantle-normalized trace-element variation patterns that are similar to ocean island basalts (OIB). A gabbro dike intruded into basalt of the Zhonggang ocean island and was overlain by basaltic conglomerate, suggesting that this dike was formed after the basalt, but before the basaltic conglomerate. The gabbro dike yields an LA–ICP–MS zircon U–Pb age of 116.2 ± 4.1 Ma, indicating the timing of formation of the Zhonggang ocean island, and suggesting in turn that the Banggongco–Nujiang Neo-Tethys Ocean remained open at this time. These data, combined with the geological history of the region, indicates that the Banggongco–Nujiang Neo-Tethys Ocean opened between the late Permian and the Early Triassic, expanded rapidly between Late Triassic and Middle Jurassic time, and finally closed between the late Early and early Late Cretaceous.  相似文献   

4.
New data on the structure, age, and composition of the tectonostratigraphic complexes of the western part of the Koryak Highland are presented. The conclusions on the sedimentation conditions are drawn and primary relations are interpreted for most complexes. New Kimmeridgian–Tithonian and Berriasian assemblages of radiolarians are established. Campanian radiolarians are found for the first time in the region.  相似文献   

5.
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on me  相似文献   

6.
Data on the distribution of radiolarians and planktonic and benthic foraminifers are obtained for the first time from the Alan-Kyr Section (Coniacian–Campanian), in the central regions of the Crimean Mountains. Radiolarian biostrata, previously established from Ak-Kaya Mountain (central regions of the Crimean Mountains) were traced: Alievium praegallowayi–Crucella plana (upper Coniacian–lower Santonian), Alievium gallowayi–Crucella espartoensis (upper Santonian without the topmost part), and Dictyocephalus (Dictyocryphalus) (?) legumen–Spongosaturninus parvulus (upper part of the upper Santonian). Radiolarians from the Santonian–Campanian boundary beds of the Crimean Mountains are studied for the first time, and Prunobrachium sp. ex gr. crassum–Diacanthocapsa acanthica Beds (uppermost Santonian–lower Campanian) are recognized. Bolivinoides strigillatus Beds (upper Santonian) and Stensioeina pommerana–Anomalinoides (?) insignis Beds (upper part of the upper Santonian–lower part of the lower Campanian) are recognized. Eouvigerina aspera denticulocarinata Beds (middle and upper parts of the lower Campanian) and Angulogavelinella gracilis Beds (upper part of the upper Campanian are recognized on the basis of benthic foraminifers. These beds correspond to the synchronous biostrata of the East European Platform and Mangyshlak. Marginotruncana coronata-Concavatotruncana concavata Beds (Coniacian–upper Santonian), Globotruncanita elevata Beds (terminal Santonian), and Globotruncana arca Beds (lower Campanian) are recognized on the basis of planktonic foraminifers. Radiolarian and planktonic and benthic foraminiferal data agree with one another. The position of the Santonian–Campanian boundary in the Alan-Kyr Section, which is located stratigraphically above the levels of the latest occurrence of Concavatotruncana concavata and representatives of the genus Marginotruncana, is refined, i.e., at the level of the first appearance of Globotruncana arca. A gap in the Middle Campanian–lower part of the upper Campanian is established on the basis of planktonic and benthic foraminifers. The Santonian–Campanian beds of the Alan-Kyr Section, on the basis of planktonic foraminifers and radiolarians, positively correlate with synchronous beds of the Crimean-Caucasian region, and beyond. Benthic foraminifers suggest a connection with the basins of the East European Platform.  相似文献   

7.
The Rehai geothermal field in Tengchong County, Yunnan Province is a significant high-temperaturehydrothermal convective system. The geothermal reservoir is composed of granite. Various geothermometersare used to evaluate the reservoir temperature. The most likely temperature of the reservoir as representedby T_(Na-K-Ca) is about 230℃. The chemical and isotopic compositions of fluids before boiling within the reser-voir are estimated. The mixing and dilution of cold and warm waters are discussed. The Rehai geothermal fieldis a high-temperature (hot) water system with the subsurface boiling zone close to the surface. The reservoirpressure at different depths is calculated. And finally the water-rock equilibration is inferred.  相似文献   

8.
Doklady Earth Sciences - This paper reports on the lithological, micropaleontological, and chronometric data (radiocarbon dating) for one of the areas of the White Sea coast. The sedimentary...  相似文献   

9.
The tectonic and geochemical characteristics suggest that the plagiogranites exposed in the vicinity of Bingdaban on the northen margin of the central Tianshan uplift zone show a distinct mantle-source character, and their enrichment in LREE and selected enrichment in LILE(large ion lithophile elements)reflect a setting related to an arc tectonic regime.These rocks represent the products formed at shallow levels from mantle-derived magmas modified with subduction components(or super crustal rocks).  相似文献   

10.
The Tari‐Koroba district is at an altitude of about 1,500 m in the Southern Highlands of Papua in an imbricate province in which uplift and faulting occurred in Pliocene times. In the southeast of the area Miocene limestones are overlain by volcanic rocks erupted about 0.85 m.y. ago, as determined from K‐Ar measurements. These middle Pleistocene flows crossed the course of the Tagari River, damming its waters to form Lake Haibuga. Sediments accumulated in this and neighbouring basins. At one site near Pureni, diprotodontid remains were found; wood associated with the deposit gave a 14C age of 32,700 yrs B.P. Pollen from this fossiliferous horizon and from another section nearby (14C age of 38,600 yrs B.P.) indicate that the climate was cooler than at present and perhaps equivalent to that experienced at about 600 m higher elevation today. Pollen from stratigraphically lower samples indicate still colder conditions and may reflect a glacial phase in the highlands earlier than the last glaciation.  相似文献   

11.
The quartz in the Haigou gold deposit contains a great abundance of three-phase CO2-NaCl-H2O and two-phase CO2-rich inclusions, which are associated with two-phase NaCl-H2O ones. The ore-forming fluids, which were rich in CO2, are classified into two types with two different sources: the high-salinity CO2-rich NaCl-H2O fluid derived from magmatic hydrothermal solution, and the low-salinity NaCl-H2O fluid from ancient meteoric water. The optimum conditions for gold mineralization are 220-300℃ for the temperature, 4-20 MPa for the fluid static pressure, 1-3 km for the mineralization depth, 2-7 w (NaCl)/10-2 for the fluid salinity, and 0.644 g/cm3 for the total density. The fluid was in a critical or supercritical state at the initial stage of mineralization, and it boiled and was unmixed with CO2 and NaCl-H2O in the climax of mineralization, leading to the decomposition of Au-chlorine complexes and the bulk precipitation of Au.The type, association, homogenization temperature and composition (CO2/H2O val  相似文献   

12.
The sedimentary background and sedimentary environment of the Lower Cretaceous of Lingshan Island, Shandong, remain unclear. There is considerable controversy as to whether the sedimentary environment was marine or continental. In this study, analyses were conducted with respect to indicators of paleosalinity, the chemical composition of clay, paleobiota, the characteristics of strata exhibiting salinization in eastern China during the Early Cretaceous, and the relationship between paleosalinity and paleoclimate. The results indicate that the sedimentary environment of the Lower Cretaceous Laiyang Group of Lingshan Island was that of a salified lake rather than a marine environment. This study not only provides a reference for determining the sedimentary environment of the Lower Cretaceous Laiyang Group of Lingshan Island but also offers a new perspective for the study of Cretaceous strata with salinization characteristics in eastern China.  相似文献   

13.
The paper presents original authors' data on the O, H, C, S, and Sr isotopic composition of water and sediments from the basins into which the Aral Sea split after its catastrophic shoaling: Chernyshev Bay (CB), the basin of the Great Aral in the north, Lake Tshchebas (LT), and Minor Sea (MS). The data indicate that the δ18О, δD, δ13C, and δ34S of the water correlate with the mineralization (S) of the basins (as of 2014): for CB, S = 135.6‰, δ18О = 4.8 ± 0.1‰, δD = 5 ± 2‰, δ13C (dissolved inorganic carbon, DIC) = 3.5 ± 0.1‰, δ34S = 14.5‰; for LT, S = 83.8‰, δ18О = 2.0 ± 0.1‰, δD =–13.5 ± 1.5‰, δ13C = 2.0 ± 0.1‰, δ34S = 14.2‰; and for MS, S = 9.2‰, δ18О =–2.0 ± 0.1‰, δD =–29 ± 1‰, δ13C =–0.5 ± 0.5‰, δ34S = 13.1‰. The oxygen and hydrogen isotopic composition of the groundwaters are similar to those in MS and principally different from the artesian waters fed by atmospheric precipitation. The mineralization, δ13С, and δ34S of the groundwaters broadly vary, reflecting interaction with the host rocks. The average δ13С values of the shell and detrital carbonates sampled at the modern dried off zones of the basins are similar: 0.8 ± 0.8‰ for CB, 0.8 ± 1.4‰ for LT, and –0.4 ± 0.3‰ for MS. The oxygen isotopic composition of the carbonates varies much more broadly, and the average values are as follows: 34.2 ± 0.2‰ for CB, 32.0 ± 2.2‰ for LT, and 28.2 ± 0.9‰ for MS. These values correlate with the δ18O of the water of the corresponding basins. The carbonate cement of the Late Eocene sandstone of the Chengan Formation, which makes up the wave-cut terrace at CB, has anomalously low δ13С up to –38.5‰, suggesting origin near a submarine methane seep. The δ34S of the mirabilite and gypsum (11.0 to 16.6‰) from the bottom sediments and young dried off zone also decrease from CB to MS in response to increasing content of sulfates brought by the Syr-Darya River (δ34S = 9.1 to 9.9‰) and weakening sulfate reduction. The 87Sr/86Sr ratio in the water and carbonates of the Aral basins do not differ, within the analytical error, and is 0.70914 ± 0.00003 on average. This value indicate that the dominant Sr source of the Aral Sea is Mesozoic–Cenozoic carbonate rocks. The Rb–Sr systems of the silicate component of the bottom silt (which is likely dominated by eolian sediments) of MS and LT plot on the Т = 160 ± 5 Ma, I0 = 0.7091 ± 0.0001, pseudochron. The Rb–Sr systems of CB are less ordered, and the silt is likely a mixture of eolian and alluvial sediments.  相似文献   

14.
According to differences of the protolith formations, the early Precambrian strata in the northern part ofthe North China platform may be divided into the stable stratigraphic region in the west and the mobilestratigraphic region in the east. Based on unconformities, either stratiragphic or tectonic, as well as significantmetamorphic thermal events, the two regions may be stratigraphically defined as follows: 1) the middleArchaean Fuping Supergroup composed of the Chenzhuang and Wanzi Groups (stable areas), and the middleArchaean Qianxi Group (mobile area), whose upper limits are all dated at 2800 Ma; and 2) the upper ArchaeanWutai Supergroup composed of the Longquanguan, Shizui and Taihuai Groups (stable areas), and the upperArchaean Zunhua, Dantazi and Zhuzhangzi Groups (mobile areas). whose upper limits are all dated at 2500Ma. A correlation of the above-mentioned units is also made. The lower Proterozoic Hutuo Group of the sta-ble region is adjusted to comprise the Gaofan, Doucun, Dongye and Guojiazhai Groups. The upper limit of theGaofan Group is placed at 2350 Ma, Dongye 1850 Ma and Guojiazhai (the lower limit of the Changcheng Sys-tem) 1700 Ma.  相似文献   

15.
16.
17.
The Triassic?Jurassic (Tr?J) boundary marks a major extinction event, which (~200 Ma) resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr?J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites?Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites?Pinuspollenites Assemblage, and the Sinemurian Perinopollenites?Cycadopites Assemblage. The Tr?J boundary is placed between bed 44 and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio?Ferganoconcha and Waagenoperna?Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation, Unio?Ferganoconcha and Waagenoperna?Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine?littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.  相似文献   

18.
The Archean-Paleoproterozoic terrane of central Brazil is an exotic and allochthonous part of the Tocantins Province, a large Brasiliano/Pan-African orogen of the South American Platform formed during the Brasiliano orogeny. The terrane amalgamated to the province during the late stages of the orogeny as a crustal segment consisting of six Archean orthogneiss complexes and five low-grade metamorphic, in part Paleoproterozoic (Rhyacian) greenstone belts. The Uvá complex is the southernmost orthogneiss association of the Archean-Paleoproterozoic terrane of central Brazil. New U–Pb LA-ICP-MS data from zircon crystals show that the complex formed at least during two magmatic stages. The older consists of polydeformed tonalite and granodiorite batholitic and diorite stock protoliths with igneous age of 3040 Ma to 2930 Ma. The youngest comprises tonalite, monzogranite and granodiorite tabular bodies formed between 2876 and 2846 Ma. As compared to the orthogneisses of the northern portion of the terrane, both the oldest and youngest granitogenesis stages of the Uvá complex are, in average, about 150 Ma older. This suggests that the northern and southern orthogneisses formed during different times as independent crustal segments, but when and why they amalgamated is still under investigation.  相似文献   

19.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not L  相似文献   

20.
1 Background of the project and research route 1.1 Background of the project The Niuchangpin ski field at Shennongjia is designed as the biggest natural ski field in the Huazhong (central China) area, which will be a multifunctional ski field base incl…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号