首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
涪江流域径流变化趋势及其对气候变化的响应   总被引:4,自引:0,他引:4  
采用Mann-Kendall非参数检验方法分析了涪江流域实测径流量的变化趋势,根据假定的气候变化情景和HADCM3预估的气候情景,利用考虑融雪的水量平衡模型(SWBM模型)分析了径流对气候变化的响应。结果表明:涪江流域径流量总体呈现递减趋势,但非汛期的个别月份有增加趋势,实测年径流变化主要是由于气候要素变化引起的,流域内的水电开发对径流量的季节分配存在一定的影响。SWBM模型对涪江流域月流量过程具有较好的模拟效果,实测与模拟径流量总体较为吻合,只有个别年份峰值模拟误差相对较大。气温变化固定的情况下,降水变化与径流变化之间的关系接近线性;在降水变化相同的情况下,单位气温变幅引起的径流量变化幅度也基本相当。尽管不同排放情景下涪江流域径流量的变化有一定差异,但总体来看,未来水资源可能以偏少为主,特别是2030年以后,多年平均偏少量将可能超过5%。  相似文献   

2.
汉江流域未来降水径流预测分析研究   总被引:7,自引:0,他引:7  
本文应用统计降尺度法将全球气候模式和VIC分布式水文模型进行耦合,研究未来A2气候情景下汉江流域降水径流变化情况.首先应用基于光滑支持向量机的统计降尺度法在全球气候模式CGCM2和HadCM3的A2气候情景下,分别预测未来汉江流域日降水、气温过程,然后将预测降水过程作为VIC模型的输入,模拟预测未来汉江流域径流过程.研究结果表明,在CGCM2气候模式下,2020s(2011~2040年)时期汉江流域径流小于基准年,2050s(2041~2070年)时期与基准年基本相当,2080s(2071~2100年)时期大于基准年;在HadCM3气候模式下,2020s时期汉江流域径流小于基准年,2050s和2080s时期均比基准年增加;降水、气温预测结果与径流基本一致.  相似文献   

3.
根据国家气候中心提供的7个气候模式的情景资料和黄河流域108个站点的实测气候要素资料,评估了不同气候模式对黄河流域历史(基准期1961~1990年)气候要素的模拟能力,在此基础上,采用较为适合黄河流域的气候模式资料,分析了不同RCP排放情景下黄河流域未来的气候变化趋势。结果表明,MPI-ESM模式能够较好地模拟黄河流域气温降水的历史变化。黄河流域未来气温将持续升高,线性升率约为0.28~0.45℃/10a,未来降水变化具有较大的不确定性,与基准期相比,未来黄河流域降水与基准期基本持平或偏少。气温降水变化的季节分配和空间分布差异明显,2、8、9月份升温幅度较大,5月份升温幅度较小;2、5、12月份降水普遍增多,6~8月份降水减少;黄河源头及宁夏内蒙河段升温幅度较大;黄河源头降水以增多或减少幅度较小为主,中游下段及下游地区降水以减少为主。  相似文献   

4.
西部高寒河源区因冰川积雪冻土等特殊的地理环境,其径流过程的模拟与预测一直是水文学研究的难点和热点问题之一,全球气候变暖为这一地区的水文模拟提出了新的挑战。以雅鲁藏布江拉孜以上流域为研究区域,基于可考虑冰川积雪融水的SWAT分布式水文模型对拉孜站径流过程进行模拟,评估SWAT模型在高寒河源区的适用性。基于未来气候变化情景,统计分析了未来研究区降水、气温的变化趋势,预估了气候变化对区域径流过程的影响。结果表明:SWAT模型在拉孜以上流域径流过程模拟中具有较好的适用性,模型在率定期和验证期月尺度NS系数分别达到了0.78和0.84;未来研究区降水、气温均呈现出增加趋势,且随着排放情景的上升,气温、降水增加幅度有变大趋势;未来研究区不同时段径流量也呈现出不同的增加趋势,在2020~2049年的RCP2.6、RCP4.5和RCP8.5情景下,相较于基准期径流分别增加了约11.8%、14.0%、16.5%,为下游水资源可持续开发利用带来了更大的挑战。  相似文献   

5.
气候变化对玛纳斯河的径流量影响预测模拟分析   总被引:1,自引:0,他引:1  
王晓杰  刘海隆  包安明 《冰川冻土》2012,34(5):1220-1228
山区积雪和冰川融水径流是内陆干旱区的重要水资源, 研究全球变暖情景下温度对融雪径流的影响具有重要意义. 以典型的内陆河玛纳斯流域上游为例, 利用基于度-日因子算法的SRM(Snowmelt Runoff Model)融雪径流模型, 根据当前变化趋势和年内分配模拟出20种假定来模拟未来气候情景(气温上升1 ℃、 2 ℃、 3 ℃、 4 ℃和降水变化率为0、 ±10%、 ±20%的随机组合情况)下的河道径流量, 从而计算出径流量的变化率, 分析了温度和降水变化对径流量的影响. 结果表明: 对于以雪冰融水为主要补给的玛纳斯河, 随着温度和降水的增加, 径流量也会增加, 并会使融雪径流提前. 假定降水量不发生大的变化, 温度增高1 ℃, 径流量增大13%~16%; 在气温一定时, 降雨量增加10%, 径流量增加2%左右, 说明气温和降水都对干旱区内陆河山区径流形成具有重要影响. 该研究对制定气候变化情景下的水资源适应对策具有重要指导意义.  相似文献   

6.
基于模型率定期(基准期)气候自然变异的模拟方法及气候自然变异引起的径流变化的可能情况分析,此部分研究未来期(2021~2051年,2061~2091年)气候变化下径流变化情况及气候自然变异的影响。基于CSIRO、NCAR、MPI三种气候模式及A1B、A2、B1三种排放方式共7种未来气候情景,应用和基准期相同的水文模型和研究流域,引入基准期模型率定出的参数,考虑气候自然变异的影响,对未来气候变化对水资源的影响进行分析。为消除气候模式本身的系统误差,采用δ差值方法得到各模式各排放情景下的未来气候情景。该项研究主要说明如何在气候变化的影响评价中将气候自然变异的贡献分离出来,从而实现更客观的气候变化的影响评价。研究结果表明,气候变异的影响在整个气候变化进程中的贡献随时间的推移将有所不同。未来2021~2051年期间,气候自然变异的影响相对较大;未来2061~2091年期间,由温室气体引起的气候变化的影响占主导。  相似文献   

7.
李正最  周慧  张莉  毛德华 《水文》2018,38(3):29-36
流域水资源演化与气候变化和人类活动紧密相关,气候变化与人类活动的加剧极大地改变了流域水文循环。通过相似性和独立性分析,从CMIP5公开发布的47个气候模式中筛选出5个代表性气候模式,然后计算未来高、中、低3种不同排放情景下的气温和降水,构造符合研究区产汇流特性的水文模型,计算洞庭湖流域水资源量并分析其演化规律。结果表明:不论温室气体排放水平如何,洞庭湖流域水资源量在未来60a呈现增加态势,汛期水量增加概率加大,而在高排放情景下枯季水资源量表现为减少趋势;未来洞庭湖流域水资源的时程分配将更趋不均匀化,而温室气体的持续排放将使其变化加剧。  相似文献   

8.
黄河中游水文变化趋势及其对气候变化的响应   总被引:26,自引:5,他引:21       下载免费PDF全文
黄河中游水资源匮乏,分析水文要素变化趋势对实现水资源的可持续开发利用具有重要意义。根据流域地貌特征及水文站控制情况,将黄河中游划分为3个区间,分别为:河-龙区间、龙-三区间和三-花区间,采用Mann-Kendall秩次相关检验法与线性回归方法,分析检验了各区间年径流量的历史变化趋势。采用设定情景与水文模拟相结合的途径,评估了不同区间河川径流量对气候变化的响应。根据1950-2005年资料分析,结果表明:黄河中游干流控制站实测径流量与区间径流量均具有显著的减少趋势。若气温升高1℃,年径流量将减少3.7%~6.6%;河川径流对降水变化更为敏感,若降水减少10%,河川径流量将减少17%~22%;近些年黄河中游气温升高和降水减少是河川径流减少的重要原因之一。  相似文献   

9.
基于Budyko假设预测长江流域未来径流量变化   总被引:3,自引:0,他引:3       下载免费PDF全文
基于Budyko水热耦合平衡假设,推导了年径流变化的计算公式,分析了长江流域多年平均潜在蒸发量、降水量、干旱指数和敏感性参数的空间变化规律。选用BCC-CSM1-1全球气候模式和RCP4.5排放情景,把未来气候要素预估值与LS-SVM统计降尺度方法相耦合,预测长江流域未来的气温、降水和径流变化情况。采用乌江和汉江流域的长期径流观测资料,分析验证了基于Budyko公式计算年径流变化的可靠性。结果表明:降水量变化是影响径流量变化的主导因素;长江各子流域未来径流相对变化增减不一,最大变幅10%左右;在未来2020s(2010—2039年)、2050s(2040—2069年)和2080s(2070—2099年)3个时期内,长江南北两岸流域的径流将出现"南减北增"现象,北岸径流变化增幅逐渐升高,南岸径流变化减幅逐渐降低。  相似文献   

10.
PRECIS模式对宁夏气候变化情景的模拟分析*   总被引:2,自引:0,他引:2  
使用英国Hadley气候中心区域气候模式PRECIS,分析了B2温室气体排放情景下,相对于气候基准时段1961~1990年宁夏2071~2100年(2080s)地面气温、降水量等的变化。结果表明:PRECIS模式能够很好地模拟宁夏气温的分布特征,对夏季最高气温的模拟效果好于冬季最低气温;较好地模拟出了宁夏降水南多北少的空间差异特征,且对夏季降水的模拟能力明显强于年均降水和冬季降水。相对于气候基准时段, 在B2情景下,2080s宁夏年平均、冬季和夏季平均气温均明显上升,宁夏北部和南部的部分地区气温上升幅度最大,夏季平均气温和最高气温上升幅度大于冬季平均气温和最低气温;未来宁夏年、冬季和夏季平均降水较基准时段均有所增加,但降水随年代际却呈减少趋势,由于气温和降水的气候变率加大,2080s宁夏出现高温、干旱、洪涝等异常天气事件的可能性增大。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Some olistolites reworked in a Tertiary flysch of Mount Parnon (Peloponnesus, Greece) exhibit a Late Permian assemblage, dominated by Paradunbarula (Shindella) shindensis, Hemigordiopsis cf. luquensis and Colaniella aff. minima. This association corresponds to the Late Wuchiapingian (=Late Dzhulfian), a substage whose algae and foraminifera are generally little known. Contemporaneous limestones crop out in the middle part of the Episkopi Formation in Hydra, but they are rather commonly reworked in Mesozoic and Cainozoic sequences. The palaeobiogeographical affinities shared by the foraminiferal markers of Greece, southeastern Pamir, and southern China, are very strong (up to the specific level), and are congruent with the Pangea B reconstructions. To cite this article: E. Skourtsos et al., C. R. Geoscience 334 (2002) 925–931.  相似文献   

13.
PALEONTOLOGY     
正20141596 Liu Yunhuan(School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China);Shao Tiequan Early Cambrian Quadrapyrgites Fossils of Xixiang Boita in Southern Shaanxi Province(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,35(3),2013,p.39-43,3 illus.,20 refs.)  相似文献   

14.
正20141719 Chen Zhijun(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China);Chen Jianguo Automated Batch Mapping Solution for Serial Maps:A Case Study of Exploration Geochemistry Maps(Journal of Geology,ISSN1674-3636,CN32-1796/P,37(3),2013,p.456-464,2 illus.,2 tables,10 refs.)  相似文献   

15.
正20140962 Chen Fenning(Xi’an Institute of Geology and Mineral Resources,Xi’an710054,China);Chen Ruiming Late Miocene-Early Pleistocene Ostracoda Fauna of Gyirong Basin,Southern Tibet(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,87(6),2013,p.872-886,6illus.,56refs.)  相似文献   

16.
PETROLOGY     
正1.IGNEOUS PETROLOGY20142008Cai Jinhui(Wuhan Center,China Geological Survey,Wuhan 430205,China);Liu Wei Zircon U-Pb Geochronology and Mineralization Significance of Granodiorites from Fuzichong Pb-Zn Deposit,Guangxi,South China(Geology and Mineral Resources of South China,ISSN1007-3701,CN42-1417/P,29(4),2013,p.271-281,7illus.,  相似文献   

17.
正20141205Cheng Weiming(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China);Xia Yao Regional Hazard Assessment of Disaster Environment for Debris Flows:Taking Jundu Mountain,Beijing as an  相似文献   

18.
正20141266Fan Chaoyan(Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes,Guangzhou 510275,China);Wang Zhenghai On Error Analysis and Correction Method of Measured Strata Section with Wire Projection Method(Journal of  相似文献   

19.
正20140582 Fang Xisheng(Key Lab.of Marine Sedimentology and Environmental Geology,First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China);Shi Xuefa Mineralogy of Surface Sediment in the Eastern Area off the Ryukyu Islands and Its Geological Significance(Marine Geology Quaternary Geology,ISSN0256-1492,CN37  相似文献   

20.
正20141810 Bian Yumei(Geological Environmental Monitoring Center of Liaoning Province,Shenyang 110032,China);Zhang Jing Zoning Haicheng,Liaoning Province,by GeoHazard Risk and Geo-Hazard Assessment(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(3),2013,p.5-9,2 illus.,tables,refs.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号