首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
雪冰中汞的研究进展   总被引:1,自引:0,他引:1  
汞是具有特殊物理化学性质的重金属元素,其较强的挥发性使之能够参与全球尺度传输,汞的高毒性又能对人类和高等生物体产生极大危害,因而汞是一种全球性污染物,在近几十年来备受科学界的关注.汞的全球生物地球化学循环演化规律是目前环境科学领域的研究热点.冰冻圈是地球系统的关键组成部分之一,是各圈层相互作用的重要环节;而雪冰是冰冻圈的主体,是环境和气候记录的良好载体之一.对南极、北极和中低纬高海拔冰川现代雪冰和冰芯中汞的季节变化、空间差异以及历史变化的研究成果进行了综述,总结了北极和亚北极地区汞的雪/气界面过程研究,归纳了汞的实验室检测手段和方法.针对该领域目前研究上的空白和热点,分别对利用冰芯高分辨率和长时间序列记录重建工业革命以来汞的变化历史(特别在青藏高原)、中低纬冰川区汞的雪/气界面过程、雪冰中汞的同位素分析等进行了展望.  相似文献   

2.
汞是一种全球性污染物,雪冰是冰冻圈汞的生物地球化学循环中最主要的介质之一,汞在雪冰消融过程中的行为受到众多学者关注。除两极地区外,高海拔地区分布着大量山地冰川,其对气候响应更加敏感,距离人类居住区更近,可直接影响水资源和水质安全等。因此,研究山地冰川消融过程中汞的行为及环境效应对全面理解汞的生物地球化学具有显著的科学价值,同时对指导人类适应气候环境变化也具有很强的实际意义。概述了山地冰川区汞的沉降与贮存,总结了雪冰消融过程中汞的迁移转化以及冰川径流汞传输的特征,认为山地冰川消融是潜在的汞释放源,汞在冰川径流补给生态系统中的归宿和生态环境效应值得关注。最后,对山地冰川消融释汞过程和冰川径流汞传输研究的热点问题进行了展望。  相似文献   

3.
冰冻圈区域河流是连接冰冻圈及河流中下游,乃至海洋碳库的重要通道。气候变暖导致冰冻圈快速萎缩,致使储存在冰川和冻土中的黑碳暴露并迁移,深刻影响冰冻圈区域河流黑碳的来源及输移过程,对海陆碳循环具有重要意义。本文重点综述了青藏高原、北极、阿尔卑斯山脉、落基山脉以及安第斯山脉等典型冰冻圈区域河流黑碳的通量、来源以及传输运移途径。结果表明:典型冰冻圈区域河流黑碳的传输通量约为2.29 Tg·a-1,约占全球河流黑碳通量的5.33%。除大气干湿沉降和径流侵蚀外,冰川消融和冻土退化对冰冻圈区域河流黑碳浓度及通量变化具有显著影响,其中青藏高原和阿拉斯加冰川消融每年释放进入河流的黑碳通量分别为10.00 Gg(7.74~12.30 Gg)和0.60 Gg(0.47~0.73 Gg)。然而,冻土退化对冰冻圈区域河流黑碳的影响程度尚不清楚。总体而言,冰冻圈区域河流黑碳的研究不足将严重限制区域乃至全球碳循环的系统认识,未来亟需加强冰冻圈区域河流黑碳的系统监测与研究,为量化全球变暖背景下冰冻圈区域河流黑碳变化及其影响提供科学数据。  相似文献   

4.
雪冰反照率能够改变冰川表面能量收支平衡,是影响冰川消融的重要因素之一。利用祁连山地区冰川面积矢量数据、MODIS逐日积雪反照率、气温和降水以及冰川物质平衡等数据,探讨了祁连山典型冰川区雪冰反照率特征及其对冰川物质平衡的影响。结果表明:祁连山地区冰川多年平均反照率为0.532,冰川区面积大小与其多年平均反照率之间呈显著正相关(R2=0.16,P<0.05,N=91),即冰川面积缩减1 km2,对应的平均反照率下降0.0025。祁连山老虎沟12号冰川反照率在夏季有明显的海拔效应,且强于其他时段,达到0.047?(100m)-1。典型冰川年均物质平衡量与冰川表面夏季(6—8月)平均反照率之间存在显著的正相关关系,老虎沟12号冰川和七一冰川决定系数R2分别达到了0.48(P<0.05)和0.66(P <0.05)。冰川表面夏季平均反照率这一指标能够较好地衡量青藏高原北部祁连山地区冰川物质平衡的变化。  相似文献   

5.
李松  王宁练  郑奎  宋瑶 《冰川冻土》2023,(2):575-587
铅是一种对人类危害极大的有毒重金属元素,示踪铅的来源是控制铅污染的前提。由于铅同位素在自然过程中难以发生明显的分馏而保留了污染源区的特点,成为追踪铅污染源强有力的“指纹”工具。雪冰作为冰冻圈重要的环境介质,因具有保存大气铅的特征,对雪冰的研究可以重建区域和全球的大气污染变化,探讨过去铅排放的活动历史。本文系统地总结了三极地区(南极、北极、青藏高原及周边地区)雪冰中铅浓度与铅同位素记录、空间分布以及使用铅同位素对雪冰铅源进行识别与解析的相关研究。结果表明:三极地区雪冰铅浓度呈现第三极>北极>南极的空间分布特征,其中第三极北部地区雪冰中铅浓度整体较南部偏高且拥有更低的206Pb/207Pb比值。冰芯环境记录表明,铅污染显著发生在古罗马和中世纪时期、工业革命时期(采矿、冶炼、燃煤)和20世纪下半叶(含铅汽油使用前后),三极地区雪冰中铅浓度峰值主要出现在20世纪70年代左右。铅同位素示踪显示矿物粉尘是三极地区雪冰中铅的主要自然来源,其中南极不同地点雪冰还受到火山活动不同程度的影响。南极雪冰中的铅污染主要来源于澳大利亚和南美洲国家,北极雪冰...  相似文献   

6.
偏远地区雪冰中的化学组成在一定程度上可以反映当地的大气环境状况。为揭示青藏高原冰川表层雪中低分子有机酸的特征、探讨其可能来源及对降水酸度的贡献,进一步理解偏远地区酸沉降的形成机制,本研究基于2021年5至6月在青藏高原的五条冰川:阿尔金、扎子沟、七一、煤矿和玉珠峰采集的28个表层新雪样,分析了雪样中低分子有机酸的含量和组成特征。结果表明:研究区表层雪中的甲酸、乙酸和草酸的浓度范围分别为90.2~225.2 ng·mL-1、54.6~277.8 ng·mL-1和46.1~474.0 ng·mL-1,除煤矿冰川外,雪样中有机酸总浓度相对较高。根据亨利定律和理想气体方程对有机酸的来源进行分析,表明阿尔金、扎子沟和煤矿冰川地区表层雪中的有机酸均主要来源于大气中不饱和碳氢化物的氧化反应等间接来源,而玉珠峰和七一冰川地区表层雪中的有机酸则主要来源于植物、土壤、生物质和化石燃料燃烧以及人类活动直接排放。在本研究中,甲酸、乙酸和草酸之间高度相关(相关系数介于0.73~0.97之间),表明它们可能均来自生物质燃烧。在有机酸的降水酸度贡献分...  相似文献   

7.
祁连山老虎沟12号冰川积雪化学特征及环境意义   总被引:7,自引:5,他引:2  
2012年6月在祁连山老虎沟12号冰川采集雪坑和表层雪样品, 结合相关分析法、 海盐示踪法、 气团轨迹法等方法, 对冰川积雪的主要化学离子特征、 来源及环境意义进行分析研究.结果表明, 积雪中平均离子浓度Ca2+>SO42->NH4+>NO3->Cl->Na+>Mg2+>K+. 雪坑中Ca2+是主要的阳离子, SO42-是主要的阴离子; 各种离子在雪坑中的平均浓度要远大于表层雪, 而且雪坑中的化学离子浓度峰值与污化层有着很好的对应性.同时, 与青藏高原、 中亚天山、 阿尔泰山以及北半球其他区域高海拔雪冰化学特征进行比较, 发现祁连山老虎沟12号冰川区积雪化学特征受亚洲粉尘源区陆源矿物影响较大.然而, 雪坑中的离子(尤其是Na+和Cl-)除了陆源矿物粉尘之外, 部分还来源于海洋源.结合NOAA Hysplit模型对冰川区积雪化学离子来源进行了后向轨迹反演验证.  相似文献   

8.
基于青藏高原昆仑山玉珠峰冰川Core 1冰芯钻取过程中所获得的相关资料,揭示出在该冰芯钻取点处的冰川内部34.34~34.64 m深度段存在一个富含水冰层,其未冻水(液态水)具有承压性质,水头高度至少可达到8.54 m. 该富含水冰层的存在不仅对冰川温度场带来了极大的影响,而且使该层中δ18O记录趋于均一化. 通过分析,揭示出该富含水冰层中可溶杂质离子浓度明显高于其上部冰层中的可溶杂质离子浓度,这是富含水冰层在形成初期其上部粒雪层融水下渗所引起的可溶杂质离子淋溶的结果. 同时,研究表明玉珠峰冰川粒雪中可溶杂质离子的优先淋溶顺序为NO3-> Mg2+> Na+> Cl-> K+> SO42-> Ca2+> NH4+. 提出可利用最易淋溶离子的浓度与最不易淋溶离子的浓度之比值,来判断冰雪层中可溶杂质离子浓度峰值是否与淋溶有关. 结合青藏高原其他地点冰芯钻取过程中发现的富含水冰层状况,认为青藏高原冰川内部富含水冰层不是在整个冰川区域内呈层状分布,而是在冰川内部呈透镜状分布. 冰川内部富含水冰层的存在,表明其形成初期气候相对较暖. 最后,阐明了青藏高原冰川中富含水冰层的形成机理与演化过程,并预测了其潜在的灾害效应.  相似文献   

9.
表层雪是联系大气成分与冰芯记录的重要纽带,是研究成冰作用过程中化学组成变化的起点.为配合天山乌鲁木齐河源1号冰川成冰作用过程中化学组成变化的研究,对1号冰川积累区(海拔4130 m)一个完整年度的表层雪样品进行了低分子有机酸和无机阴离子含量的分析.结果显示:表层雪中低分子有机酸主要有HCOO-、CH3COO-、C2H5COO-和(COO)22-,无机阴离子主要有F-、Cl-、NO2-、NO3-、SO42-和PO43-.除(COO)22-外,大部分高浓度的有机酸和无机阴离子因受到周围环境和盛行风的影响呈现出明显的季节变化特征,即夏半年离子浓度变化剧烈,最大值和最小值同时出现在夏半年,冬半年的浓度则相对小而稳定;而(COO)22-和低浓度的无机阴离子随季节变化的特征不明显,在全年均显示出波动性.在外界条件不变的情况下,表层雪可以长时间(至少半年时间)保存其中高含量的化学组成不被改变.  相似文献   

10.
青藏高原东南部冰川雪冰重金属元素特征   总被引:4,自引:3,他引:1  
雪冰可以很好地记录大气重金属元素的含量水平。基于2015年6月在青藏高原东南部(藏东南)地区采集的4条冰川的雪坑和表层雪冰样品,分析并讨论了雪冰重金属元素特征。结果显示,Pb、Cd等重金属元素含量与高原其他地区雪冰中一致,含量总体较低,显著低于天山和阿尔卑斯山雪冰中Pb和Cd含量,与格陵兰地区雪冰Pb和Cd含量大致相当,但显著高于南极地区雪冰中Pb和Cd含量,这表明藏东南雪冰中元素含量仍代表全球背景地区大气环境状况。元素富集因子结果显示,Pb、Cr、Cd、Cu、Zn、Mo、Sn等发生强烈富集(EFs>10),而以地壳源为主的元素如Fe、Ti、Mn、Th等则富集较弱。主成分分析表明,不同重金属元素的污染来源存在差异;结合后向气团轨迹分析,推断藏东南地区雪冰元素含量不可避免地受到南亚地区人类活动排放污染物的显著影响。目前,藏东南地区冰川呈显著退缩状态,强烈的冰川消融可释放大量的重金属元素进入河流,可能对下游地区的人类生产生活以及生态系统产生重要影响。  相似文献   

11.
深入了解全球变暖背景下青藏高原东南部海洋型冰川的变化趋势及其对气候变化的响应,对认识不同类型冰川对气候变化的响应方式有重要意义。根据Landsat系列遥感影像和数字高程等数据提取了青藏高原东南部雀儿山地区1987—2016年期间多年的冰川边界,并对其变化过程和特征进行了分析。结果表明:1987—2016年雀儿山地区冰川面积持续减小,变化率为(-1.69±0.87)%·a-1,为青藏高原众多山系中变化最大的之一。研究区冰川消融主要发生在规模<1 km2的小型冰川及海拔5 200 m以下的冰川消融区,其中西南方向的冰川退缩速率最大。气象数据分析结果显示,1987—2016年雀儿山地区夏季平均气温总体上升了1.58 ℃,平均升温速率为0.33 ℃?(10a)-1。由于夏季平均气温与冰川变化过程有显著的相关性,而同期年降水量无明显变化,由此推测,夏季平均气温的上升是雀儿山地区冰川快速退缩的主因。此外,相对于单纯基于光谱特征提取冰川信息,结合地形阴影模拟数据进行遥感冰川分类在一定程度上可以提高分类精度。  相似文献   

12.
赵银  张勇  刘时银  王欣 《冰川冻土》2022,44(3):930-945
青藏东南部海洋型冰川具有独特的气候敏感性,普遍呈现加速退缩趋势,这不仅影响区域水资源安全,而且伴生了相应的冰川灾害,是当前青藏高原冰冻圈变化研究的热点区域之一。本文对海洋型冰川物质平衡时空变化特征进行了综述,2000年以来冰川总体处于物质亏损状态,其平均物质平衡介于-0.66~-0.61m w.e.·a^(-1)之间;同时总结了海洋型冰川物质加速变化的驱动因素以及新特征。当前海洋型冰川物质平衡变化研究受观测数据缺乏和模型模拟不确定性等问题限制,尤其现有模型对冰面裂隙增多与扩张、冰崖-冰面湖-表碛相互作用、冰内冰下过程、冰崩、末端冰湖水-冰相互作用等过程的描述过于简化或基本缺失,其机理及影响仍存在较大的不确定性。未来需加强海洋型冰川物质平衡的综合监测,基于多数据和多方法的集成研究提高模型对冰川物质平衡多物理过程的耦合与模拟能力,为开展海洋型冰川物质变化的区域水资源效应和致灾效应研究奠定基础。  相似文献   

13.
小冰期以来羌塘高原中西部冰川变化图谱分析   总被引:10,自引:2,他引:8  
运用地理信息图谱理论与方法,以地形图、航空相片、Lantlsat TM和ETM+遥感数据为基础数据源,分析了羌塘高原中西部小冰期至2000年代的冰川变化.结果表明:这里虽仍有部分冰川存在前进,但冰川整体呈萎缩状态,而且近几十年来,冰川退缩加剧.与同一区域的普若岗日相比,研究区冰川更为稳定.与其它山区冰川相比,这里由于是极大陆型冰川区,所以冰川较其它山区冰川相对稳定.气温升高和降水减少是该区冰川退缩的主要原因.  相似文献   

14.
运用遥感(RS)与地理信息系统(GIS)技术, 结合波密县1960-2010年气象数据, 分析了西藏波密地区冰川的主要分布特征和典型大冰川1980-2010年的时空变化. 结果显示: 波密县共有冰川数量2 040条, 总面积为4 382.5 km2, 其中, 分布在海拔4 000~6 000 m的高山冰川总面积达4 086 km2, 占冰川总面积的93.2%; 南坡分布冰川1 504条, 面积3 180.04 km2, 分别占波密冰川总量的73.73%和72.56%, 而北坡占还不到三分之一. 提取1980、 1990、 2000和2010年4期面积大于20 km2的24条大冰川面积进行对比分析, 1980-2010年间波密县大冰川面积总体呈减小趋势, 由1980年的1 592.78 km2退缩至2010年1 567.04 km2, 共退缩了25.74 km2; 其中, 1980-1990年冰川变化贡献最大, 冰川面积退缩了16.62 km2, 占冰川总面积退缩量的64.6%. 波密县气象站数据显示, 50 a来冰川退缩主要受温度持续上升的影响, 降水量变化对冰川变化影响不大.  相似文献   

15.
冰川融水径流是冰川流域物质运移的重要通道, 对其水化学特征和变化的研究有助于揭示冰川作用区物质的生物地球化学循环过程, 并为认识和评价冰川消融对自然环境和人类生活的影响提供基础。青藏高原及其周边地区分布着除两极以外最大储量的冰川, 近年来在气候变暖背景下冰川加速退缩消融。该地区冰川融水径流中各类化学组分的变化及其气候环境效应研究逐渐成为热点。因此, 通过概述青藏高原冰川融水径流中无机化学组分的含量和时空变化特征, 并总结离子和元素的主要来源及常用的物源追踪手段, 进一步综合分析得到: 冰川融水径流中离子和微量元素的含量及变化特征受冰川消融、 基岩性质、 径流水文特征和其他水体物理化学过程等因子和过程的共同影响。在总结该研究领域现存问题的基础上进行了展望, 认为应加强观测和基础数据积累, 厘清无机水化学组分的输移规律, 深入揭示影响水化学组分变化的多因素的协同拮抗作用机制, 评价冰川融水径流水化学的气候环境效应, 为应对青藏高原冰川消融带来的环境变化提供科学指导。  相似文献   

16.
自20世纪90年代以来,受全球气候变暖的影响,中国冰川呈现全面、加速退缩的趋势。冰川变化引发的水资源时空分布和水循环过程的变化无疑将给中国西部,尤其是西北干旱区的社会经济发展带来深刻影响。为了减缓冰川消融速率,提高中国适应气候变暖的能力,开展了一系列人工减缓冰川消融试验研究。具体是在2020年8月5日—10月17日,以达古17号冰川为研究标靶,进行人工干预减缓冰川消融试验,即在冰川表面覆盖光热阻隔物——土工织物,并在试验期间,观测了试验区域与非试验区域的冰川消融情况。结果表明:试验期内,试验区的冰川消融速率为0.011 m w.e.?d-1,非试验区冰川消融速率为0.017 m w.e.?d-1,试验区冰川消融速率明显低于非试验区;500 m2的土工织物使达古冰川试验区域减少了204 m3 w.e.的冰川消融,使得总消融量减少了34%;覆盖光热阻隔物虽能有效减缓冰川消融过程,但受成本、环境及人力等因素制约,仅可以向西北部小冰川或冰川旅游景点推广。本次人工干预减缓冰川消融试验在一定程度上填补了中国应对冰川消融工程措施方面的空白,为以后进行工程类减缓冰川消融的试验奠定了基础,但是目前还处于初步研究阶段,需要更多的控制性试验来验证其在未来更大的时空尺度上的有效性。  相似文献   

17.
基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究   总被引:11,自引:0,他引:11  
基于多源多时相的数字遥感影像、地形图和DEM数据,利用遥感(RS)和地理信息系统(GIS)技术,对西藏玛旁雍错流域冰川地貌类型和空间分布进行了研究,并对流域内近30 a来冰川和湖泊的变化进行分析.结果表明:1974-2003年玛旁雍错流域冰川总面积减少了7.27 km2,平均退缩速率0.24 km2·a-1;湖泊总面积减少37.58 km2,平均退缩速率1.25 km2·a-1.多时相的监测表明,冰川在加速退缩,且阳坡冰川的消融速度大于阴坡,坡度陡、面积小的冰川消融比例大于坡度缓、面积较大的冰川;湖泊面积先减少后有所增加,但总面积还是减少了,不少小湖泊消失.分析流域附近气象资料可知,气温上升和降水量减少是玛旁雍错流域内冰川消融与退缩的主要原因.  相似文献   

18.
青藏高原典型冰川和湖泊变化遥感研究   总被引:70,自引:18,他引:52  
青藏高原冰川和湖泊变化是气候变化敏感的指示器,利用地形图、航空照片、TM卫星遥感资料和其它相关研究文献资料,分析了青藏高原典型地区的冰川和湖泊变化情况.结果表明:1960-2000年期间,在气温上升、降水增加、最大可能蒸散降低的背景下,研究区内不同地区湖泊的面积变化存在比较大的空间差异.以冰川融水为主要补给的纳木错和色林错地区的主要湖泊以扩大为主,而以降水为主要补给的黄河源地区的主要湖泊则基本上全面萎缩.研究区的冰川在1960-2000年期间以退缩为主,但各地退缩的幅度有较大的差异.  相似文献   

19.
1970—2000年羌塘高原冰川变化及其预测研究   总被引:4,自引:4,他引:0  
采用地学信息图谱方法,分析了羌塘高原1970—2000年的冰川变化.结果表明:1970—2000年期间,羌塘高原整体呈萎缩趋势,冰川面积退缩的年平均速率(APAC)为0.145%.a-1,年平均退缩面积3.004 km2.a-1,但也有部分冰川处于前进状态.1970—2000年羌塘高原冰川退缩加剧,但与中国西部大部分地...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号