首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
中国西南天山西域砾岩的磁性地层年代与地质意义*   总被引:11,自引:5,他引:11  
西域组是我国西部一重要并广泛引用的晚新生代地层,关于其年代和成因至今尚存争议。在西南天山喀什远源盆地喀什-阿图什褶皱带不同构造部位选择有代表性的5~6个晚新生代地层剖面开展了详细的沉积学、磁性地层年代学对比研究,据此限定了不同构造的起始变形时间以及西域砾岩的沉积年代。西域砾岩并非一年代地层单位,作为一岩石地层单位,其底界具有穿时特征,从山体(北)向喀什前陆盆地(南)逐渐变新。其底界年龄在盆地北部近源区约为15.5Ma[1],在盆地中部中源区约为8.6Ma[1],在盆地南部远源区的阿图什背斜为1.9Ma,喀什背斜为1.6~0.7Ma。这一穿时的砾岩沉积楔体的起始堆积起因于盆地北部边界逆冲断层(KBT)的活动。构造变形是由北南脉冲式迁移扩展的,其速率是非均匀的,在约15.5Ma至4.0Ma期间为1.4~3.4mm/a,在约4.0Ma以来剧增至>10mm/a。西域砾岩沉积前缘向南进积速率与构造变形前缘迁移速率有很好的一致性,但在时间上较构造变形可能滞后2.0Ma。这表明构造变形前缘向南的脉冲式扩展是西域砾岩进积并发生侧向和垂向上岩相突变的主因。  相似文献   

2.
环境磁学反映的藏南沉错地区1300年来冷暖变化   总被引:25,自引:5,他引:25       下载免费PDF全文
塔里木西缘帕米尔-西昆仑山北麓和西南天山南麓前陆盆地中巨厚的晚新生代磨拉石建造在岩石地层上包括阿图什组、西域组、乌苏组和戈壁组.通过对这套磨拉石建造及其中生长地层和生长不整合的野外观测,结合磁性地层年代学,初步研究了西域砾岩(即西域组)和西域运动的起始年代以及西域运动可能的演化阶段,得到如下初步认识:1)研究区西域砾岩开始沉积于3.5~4 6 Ma B.P.之前,其底界具有穿时性,其年代从山体向前陆盆地一般逐渐变新;2)在上述前陆盆地分布着4~6排由晚新生代磨拉石建造组成的逆断层-褶皱带.各排褶皱带均发育有生长地层及生长不整合,生长地层的开始沉积指示了该排褶皱和相应生长不整合的开始形成.从最靠山体一排褶皱带生长地层开始沉积的年代,初步判定西域运动的起始年代在西昆仑山叶城附近约为3.6 Ma B.P.,在西南天山喀什附近显然早于2.4 Ma B P.此后该运动可能经历了4~6个活动阶段,每一阶段又由若干个相对活跃期和相对稳定期组成.它们可通过各排褶皱带内生长地层的产状、组成和年代测定来确定.本文还探讨了生长地层和生长不整合形成过程中构造变形与侵蚀-剥蚀和沉积作用间的相互关系.  相似文献   

3.
晚新生代天山北缘构造变形定量研究   总被引:3,自引:1,他引:2       下载免费PDF全文
李传新  郭召杰 《地质科学》2011,46(3):709-722
晚新生代以来,由于印藏板块陆—陆碰撞,天山山脉重新活动并隆升剥蚀。确定天山隆升变形时间和规模对研究大陆岩石圈变形以及构造活动、气候和剥蚀关系具有重要意义。本文通过生长地层和磁性地层研究,结合天山北缘地震剖面的构造解析,确定了天山北缘三排平行于天山山脉的褶皱带形成时间,并对三排褶皱带的变形量进行平衡恢复,其中三排褶皱中第一排的构造缩短量约为2.9 km(缩短率为15.1%),构造形成时间约为6 Ma,其缩短速率为0.4 mm/a;第二排构造缩短量约为5.9km(缩短率为23.7%),构造形成时间约为2 Ma,缩短速率为2.9mm/a;第三排构造缩短量约为4.3 km(缩短率为15.7%),构造形成时间约为1Ma,缩短速率为4.3mm/a;结果表明晚新生代以来天山构造活动强度可能在加大。  相似文献   

4.
青藏高原新生代变形隆升过程是青藏高原新生代构造演化研究的热点问题,地处于高原东北部祁连山东北缘的榆木山是研究高原变形隆升时空过程的关键研究区之一.榆木山地区发育了一套粗砾相磨拉石——玉门砾岩,磁性地层研究表明其底部地质年代约为3.58 Ma.经古水流、磁化率、野外考察等推断玉门砾岩可能主要为构造隆升的产物,同时在榆木山地区还发育3个与玉门砾岩有关的不整合面,其跨越年龄分别约为:5.23~3.58Ma、2.88~2.58 Ma和<1.77~0.8 Ma.综合分析认为该地区变形隆升不晚于3.58 Ma,之后至少经历两期构造变形隆升,该结果比北东向分步生长变形隆升模式推测的变形隆升时间明显早约1Ma,应该是对高原东北部青藏-昆黄运动的响应结果.  相似文献   

5.
青藏高原新生代变形隆升过程是青藏高原新生代构造演化研究的热点问题,地处于高原东北部祁连山东北缘的榆木山是研究高原变形隆升时空过程的关键研究区之一。榆木山地区发育了一套粗砾相磨拉石——玉门砾岩,磁性地层研究表明其底部地质年代约为3.58Ma。经古水流、磁化率、野外考察等推断玉门砾岩可能主要为构造隆升的产物,同时在榆木山地区还发育3个与玉门砾岩有关的不整合面,其跨越年龄分别约为:5.23~3.58Ma、2.88~2.58Ma和<1.77~0.8Ma。综合分析认为该地区变形隆升不晚于3.58Ma,之后至少经历两期构造变形隆升,该结果比北东向分步生长变形隆升模式推测的变形隆升时间明显早约1Ma,应该是对高原东北部青藏-昆黄运动的响应结果。  相似文献   

6.
依据帕米尔—西昆仑北麓新生代前陆褶皱冲断带 3条构造剖面的详细分析,发现帕米尔—西昆仑北麓除山根地带发育高角度断层外,基本上以低角度逆掩断层为主,形成与逆冲推覆构造相关的褶皱变形。乌泊尔地区表现为由山脉向塔里木盆地滑移的隐伏冲断层和上覆褶皱;苏盖特—齐姆根—甫沙地区表现为山前的三角带和向盆地扩展的两排背斜带。帕米尔—西昆仑北麓前陆褶皱冲断带的主要构造变形时间始于上新世早期(距今约 4.6Ma),断层、褶皱的变形时代由山前向盆地逐步变新,变形强度由山脉向塔里木盆地逐步减弱。帕米尔—西昆仑北麓前陆褶皱冲断带的构造缩短量为 20~70km,缩短率为 35%~50%。  相似文献   

7.
高分辨率的地震剖面显示辽河盆地西部凹陷深部存在一生长断层转折褶皱。本文对地震剖面的构造变形以及褶皱两翼的生长前、生长和生长后地层的变形几何关系进行详细构造解析;利用断层转折褶皱几何变形的计算机模拟技术分别对西部凹陷南段、北段的生长断层转折褶皱进行几何变形过程的模拟,提取构造特征并与实际地震反射剖面进行对比。研究结果表明,郯庐断裂带渤海湾北段分支断层台安 大洼断层在早新生代就存在逆冲推覆过程,构造活动主要发生在沙河街组三段下至馆陶组沉积前(E2s3下~N1g前),其逆冲推覆速率为 0.116 mm/a。  相似文献   

8.
帕米尔弧东段逆冲推覆构造特征   总被引:1,自引:0,他引:1  
帕米尔弧形构造带是青藏高原碰撞挤压表现最明显的地区之一。通过构造剖面和地震剖面解释,认为帕米尔弧东段逆冲推覆构造具有分带性特点,自南西向北东方向可以划分为逆冲推覆构造的根带、中带、锋带与锋前带,相应地发育叠瓦状逆冲断层、冲断褶皱、断层相关褶皱、单斜构造等不同的构造组合。对逆冲推覆锋带中苏盖特和阿克陶生长背斜、生长地层及形成时序分别进行了研究,确定了帕米尔弧形逆冲推覆构造以前展式(背驮式)向前陆方向扩展,逆冲推覆始于上新世,并一直持续到早更新世。弧形构造东西两段逆冲推覆运动方式和地层缩短量有很大差异:西段为与挤压方向垂直的逆冲,而东段为斜冲兼顺时针走滑;西段地层缩短量大于东段。  相似文献   

9.
青藏高原东缘龙门山前陆逆冲带复合结构与生长   总被引:1,自引:1,他引:0  
位于青藏高原东缘的北东向龙门山逆冲带,研究已经证明是中生代与新生代前陆复合扩展和生长的结果。然而,2008年5·12汶川地震地表破裂、余震和滑坡等的单向和分段迁移现象,对龙门山复合逆冲带的结构认识提出了挑战。文章在已有研究成果基础上,针对龙门山复合生长下构建的特殊结构进行了野外调查和构造解析。结果表明,以中生代与新生代两期前陆逆冲带复合生长为基础,龙门山复合逆冲带具有特殊的、主要由前陆逆冲楔叠加后形成的复合结构,而且这种复合逆冲楔具有分级和时序特征;中生代前陆逆冲楔是以逆冲断层-褶皱为特征,并分别组合形成碧口厚皮逆冲推覆体、唐王寨薄皮逆冲推覆体和龙王庙逆冲推覆体,总体从晚三叠世以前开始,至~160 Ma向南递进扩展生长;新生代前陆逆冲楔由逆冲断层和逆冲岩片组成,分为约35~10 Ma和10 Ma以来两个阶段,向南东向递进扩展生长,并可能与川西盆地东侧龙泉山构造相连通。因此,龙门山逆冲带具有前陆逆冲带和生长过程的双重复合结构。   相似文献   

10.
本文利用野外调查结果、二维地震反射剖面、钻井和测井数据建立了一条横穿库车河地区的南北向构造剖面,将库车冲断褶皱带划分为北部褶皱带、克依构造带、秋立塔格背斜带和亚肯背斜带。作者在库车冲断褶皱带北部发现了渐新世—中新世角度不整合,在库车南部亚肯背斜和东秋立塔格背斜顶部发现了构造生长地层,通过确定构造生长地层的底界,利用库车河地区古近系(下第三系)—第四系磁极柱,判断亚肯背斜和东秋立塔格背斜构造生长地层的沉积时代为5.2±0.2 Ma。上述结果暗示库车冲断褶皱带北部山前带的变形始于渐新世,并且经历了中新世、上新世的构造改造,南部秋立塔格背斜带和亚肯背斜带形成较晚,可能是上新世开始变形,而且变形活动持续至今,由此看来库车冲断褶皱带的变形时代由北向南变新。作者估算东秋立塔格背斜上新世以来(5.2±0.2 Ma)的构造变形量为7.5 km,变形速率为1.5 mm/a。  相似文献   

11.
祁连山西段及酒西盆地区第四纪构造运动的阶段划分   总被引:25,自引:6,他引:25  
通过沉积地层、地貌、构造形变等的综合研究,对祁连山西段及酒西盆地区第四纪构造运动的期次和阶段进行了划分。上新世晚期以来,这一地区至少经历过6次显著的构造变动或构造事件,其中以玉门、酒泉和白杨河运动最为强烈。针对上述构造事件进行了古地磁、孢粉、红外释光和热释光等方法的综合研究和年龄测定,论述了各阶段构造运动的方式、性质和其它有关特征。  相似文献   

12.
南天山库车褶皱冲断带构造几何学和运动学   总被引:56,自引:17,他引:56       下载免费PDF全文
汪新  贾承造  杨树锋 《地质科学》2002,37(3):372-384
印度板块与欧亚大陆的汇聚作用和持续碰撞使中亚内陆沿天山、昆仑山、阿尔金山发生变形,山脉前沿发育褶皱冲断带。南天山库车褶皱冲断带中段库车河地区发育3~4排东西走向的逆冲(掩)断层和相关褶皱,逆冲(掩)断层由北向南扩展,断层和褶皱的形成时代自北向南逐渐变新,北部山前带的变形发生于前中新世,南部秋立塔克背斜带和亚肯背斜带的变形时代为上新世(5.2±0.2Ma)。通过构造几何学和运动学分析,作者提出了库车褶皱冲断带的构造变形方式和演化模型。  相似文献   

13.
THE FORMATION AND EVOLUTION OF ALTYN TAGH FAULT SYSTEM AND ITS RELATIONSHIP TO THE GROWTH OF TIBETAN PLATEAUtheNational(G19980 4 0 80 0 )andthefundofOpeningLaboratoriesofGeomechanics  相似文献   

14.
晚新生代以来天山南、北麓冲断作用的定量分析   总被引:11,自引:0,他引:11       下载免费PDF全文
利用地表地质、二维地震和钻、测井资料建立了两条横穿天山南、北麓库车河地区和金钩河—安集海河地区的构造剖面,从几何学和运动学的角度探讨新生代以来不同序次台阶状逆断层及其相关褶皱的叠加过程、以及叠加过程中断层形态、褶皱形态与位移量之间的定量关系。生长地层和生长不整合分析表明,上新世早期(4.2~5Ma)可能是天山南、北麓新生代冲断褶皱的主要形成期,发育自天山内部的台阶状逆断层在向两侧沉积盆地扩展过程中形成多个滑脱面和断坡,断层位移在断坡位置引发褶皱变形,从而形成南北方向背斜带成排分布的构造格局。在天山南麓库车河剖面中,控制库车地区构造变形的三条台阶状逆断层位移量分别为5.7km、6.3km和18km,它们的活动时代由老到新,而位移量却逐渐增大,反映新生代以来天山南麓的冲断作用可能存在一个加速的过程。按上述数值计算,渐新世(23Ma)以来的缩短速率为1.3mm/a,上新世(5.2±0.2Ma)以来的缩短速率为3.6mm/a。在天山北麓金钩河—安集海河剖面中,山前深部楔形体内的断层位移量为16.9km,但只有6km的位移量沿中上侏罗统西山窑组煤层内的滑脱面向北传递至第二排背斜带,而至第三排背斜带,位移量已递减为0.22~0.29km。以上新世早期(4.2~5Ma)作为构造活动时间,计算出该剖面上、下构造层上新世以来的缩短速率为2.6~3.1mm/a和3.8~4.5mm/a,其中下构造层内的山前深部楔形体、霍尔果斯深层背斜和安集海背斜的缩短速率分别为3.9~4.6mm/a、1.2~1.4mm/a和0.04~0.38mm/a,这说明由于断层位移量在向北传递过程中不断被褶皱作用吸收或沿反冲断层向南消减,各排背斜带的变形强度由南向北依次减弱。  相似文献   

15.
QUATERNARY GROWTH FOLDS IN THE JIUXI BASIN AT THE NORTHEASTERN MARGIN OF THE QINGHAI—XIZANG PLATEAUgrants 49732 0 90and 496 0 2 0 36fromtheNSFofChina  相似文献   

16.
柯坪冲断带位于塔里木盆地的西北缘, 是南天山南缘冲断系统的一部分。根据野外实际考察和地震剖面解释, 总结了该冲断带的构造变形特征:发育于古生界、以寒武系膏盐层为主滑脱层、叠瓦状冲断、暴露式冲断前锋、断层传播褶皱、前展式冲断、形成于上新世-第四纪。根据平衡剖面的恢复, 柯坪冲断带的构造缩短量最小为29.1%~40.7%。   相似文献   

17.
We present the results of mapping selected cross-sections across the margins of the Chinese Tien Shan, an intracontinental mountain belt that formed in response to the India-Eurasia collision. This belt contains significant lateral variation in topography, structure, and stratigraphy at all scales, and our estimated rates of shortening also reveal a distribution of shortening that varies laterally. At the largest scale, it consists of two major high mountain ranges in the west that merge eastward into a complex, single high mountain belt with several distinct ranges, then separates farther eastward into several low mountain ranges in the south and a single narrow high mountain range in the north. Active fold-and-thrust belts along parts of the north and south flanks of the Tien Shan involve only Mesozoic and Cenozoic sedimentary cover, which varies in both stratigraphy and structure from east to west. The southern fold-and-thrust belt decreases in width and complexity from west to east and ends before reaching Korla. The northern belt begins near the longitude where the southern belt ends, and increases in width and complexity from west to east. Within these two fold-and-thrust belts are both E-W and N-S variations in stratigraphy at the scale of the fold-and-thrust belts and across individual structures. All these variations make it very difficult to generalize either structure or stratigraphy within the Tien Shan or within local areas.

Four maps and cross-sections, two across each of the northern and southern fold-and-thrust belts, imply different magnitudes of shortening. In the eastern part of the northern belt, a cross-section along the southern part of the Hutubi River yields shortening of 6.2 km, and a section to the north across the Tugulu anticline yields shortening of 5.5 km. The two parts of the cross-section cannot be added because the Tugulu anticline lies 20 km west of the Hutubi River, and diminishes greatly in amplitude toward the Hutubi River. In the western part of the northern belt, cross-sections require 4.6 to 5.0 km of shortening at Tuositai and 2.12 to 2.35 km across the Dushanzi anticline. The Tuositai structure lies south of the Dushanzi anticline, but shortening in these two areas also cannot be summed, because they seem to be separated by a N-trending strike-slip fault. In the western part of the southern fold-and-thrust belt, an incomplete cross-section along the Kalasu River suggests shortening of 12.1 to 14.1 km. If the estimated shortening of 6 to 7 km in the Qiulitage anticline, which we did not map, is added, the total shortening in this cross-section would be ~18 to 21 km. To the east, a complete cross-section at Boston Tokar yielded shortening of 10.3 to 13.0 km.

Calculating long-term shortening rates from these four cross-sections is difficult, because the time of initiation of deformation is poorly known. In the Kalasu River area of the southern belt, there is evidence that limited shortening of 2 to 4 km occurred in the early Miocene, if major thickness changes in deposition of conglomerate unit 3b are interpreted to be growth strata. Geological evidence suggests that most of the shortening began in both belts after the beginning of the deposition of the thick conglomerate unit shown as lower Quaternary on Chinese geological maps. Strata within the middle part of these conglomerates were deposited during the growth of the folds. Presence of Equus near the base of similar conglomerates indicates a Quaternary age, but the fossil localities are far from most of our cross-sections, and the contemporaneity of the rocks remains in question. The beginning of conglomerate deposition may be controlled by climate change, and if so, the beginning of conglomerate deposition may be generally contemporaneous throughout the region at ~2.5 Ma. Deformation began at some time after the onset of conglomerate deposition, but this time is not well constrained. Thus we have calculated shortening rates for 2.5, 1.6, and 1.0 Ma that should bracket maximum and minimum slip rates. These calculations yield the following ranges in the northern fold-and-thrust belt: southern Hutubi River = 2.5 to 6.2 mm/yr; Tugulu anticline = 2.1 to 5.5 mm/yr; Tuositai anticline = 1.8–2.0 to 4.6–5.0 mm/yr; and Dushanzi anticline = 0.8 to 2.1–2.4 mm/yr; and in the southern fold-and-thrust belt: Kalasu River = 4.6–5.6 (including the Qiulitage anticline = 7.2–8.4) to 12.1–14.1 (including Qiulitage anticline = 18–21) mm/yr; and at Boston Tokar = 4.1–5.2 to 10.3–13.1 mm/yr. If 2 to 4 km of shortening occurred in the Kalasu River section during early Miocene time, the long-term rates for Quaternary time are 3.2–4.8 (including Qiulitage anticline = 5.6–7.6) to 8.1–12.1 (including Qiulitage anticline = 14–19) mm/yr.

Calculation of the shortening rate across the entire width of the Tien Shan is difficult because of the rapid lateral variations in structure and because of active deformation within the range, which we have not studied. The cross-sections at Boston Tokar in the south and Tuositai in the north lie along the same longitude. Adding the shortening rates in these areas would yield a minimum range (using 2.5 Ma as the initiation time) of 5.7 to 7.2 mm/yr. If deformation began at 1.6 or 1.0 Ma, the range of shortening rates would be 10–11.2 mm/yr to 14.9–18.1 mm/yr, respectively. Because the first indication of structural growth with the mapped areas occurs above the base of the conglomerates at the top of the stratigraphic succession, a minimum shortening rate greater than 5.7 to 7.2 mm/yr is more likely.

Both the marginal fold-and-thrust belts have a thin-skinned geometry with the drcollement at -6 to 10 km and within Mesozoic and Cenozoic sedimentary rocks. Toward the interior of the range the decollement must pass into the Paleozoic basement rocks and steepen beneath the flanks of the range. The structural style is similar to that in the Laramide Rocky Mountains and the California Transverse Ranges. The highest parts of the Tien Shan are adjacent to areas of active shortening. Such a relation might suggest that the major uplift of the Tien Shan is very young, mostly latest Cenozoic or Quaternary in age. The shortening across the Tien Shan is inhomogeneous and spatially distributed.  相似文献   

18.
天山南麓库车晚新生代褶皱-冲断带   总被引:2,自引:1,他引:1  
库车褶皱冲断带位于天山南麓,由近东西走向的多条构造带组成。三叠系暗色泥岩、侏罗系煤层、古近系库姆格列木组膏盐层和新近系吉迪克组膏盐层构成库车褶皱冲断带的区域性主滑脱面。褶皱冲断带底面由北向南逐渐抬高。褶皱冲断带主体发育盖层滑脱-冲断构造(薄皮构造),基底卷入型冲断构造(厚皮构造)见于北缘的根带。新生界膏盐层之上构造变形以滑脱褶皱为特色,之下以冲断构造为特色。库车褶皱冲断带是印度-亚洲碰撞远程效应下,(南)天山晚新生代造山过程的产物。褶皱冲断带构造变形的动力来源主要是造山楔向塔里木盆地推进所形成的挤压构造应力。褶皱冲断带构造变形的起始时间为约23Ma,构造变形具有阶段式加速的特点,已经识别出约23Ma、约10Ma、5~2Ma和1~0Ma共4个变形加速期。褶皱冲断带的演化过程为前展式,褶皱冲断带前锋向南推进的同时,后缘持续变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号