首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 70 毫秒
1.
在多煤层发育的地区,实施分层压裂、合层排采工艺技术是一项降低煤层气勘探开发成本、提高产气量的重要举措。吴堡矿区煤层气资源丰富,其主力煤层为S1、T1煤层。为探讨分压合排技术在吴堡矿区煤层气勘探开发中的适用性,通过分析吴堡矿区主力煤层(S1、T1)的煤层气分压合排影响因素,研究了煤层气分压合排技术适应条件和本区S1、T1煤层分压合排的可行性。结果表明:虽然吴堡矿区S1、T1煤层的压力梯度和渗透率差别不大,但其煤层顶底板岩石特征和水文地质条件有差异,分压合排过程中存在层间干扰。因此,在现有技术条件下,不适合对本区S1、T1煤层采用分压合排技术。现场勘探试验井的排采效果也验证了理论分析的可靠性。   相似文献   

2.
新密煤田在开采二1煤层时,矿井涌水量从每小时数立方米到上千立方米,差别极大,个别矿井因水量太大多年达不到设计开采能力。在研究矿区水文地质条件的基础上,分析了煤层的充水特征,认为煤层的顶板直接充水含水层是二叠系下统下石盒子组底部的砂岩裂隙水,底板直接充水含水层是石炭系太原组灰岩岩溶裂隙含水层,奥陶系岩溶裂隙含水层是煤层底板间接充水含水层;通常情况下顶板水不会对采煤构成威胁,灾害性突水主要来源于煤层底板;石炭系灰岩含水层与奥陶系灰岩含水层水力联系较密切,通常矿井大的涌水都有奥陶系灰岩水参与;大隗断层使得区内寒武系中上统灰岩直接与二叠系石千峰组砂、页岩接触,隔断了南北两侧的水力联系,并将矿区分割为两个水文地质亚区;矿井在开采深度在+50m标高以上时,充水水源主要来源于煤层顶板,底板无水,在开采深度在+50m以下时,矿井涌水量相对较大,随着开采深度的增加,矿井涌水量有逐渐减小的趋势。该研究对确定矿井充水因素,进行突水预防具有指导和借鉴意义  相似文献   

3.
煤层气井多煤层合采效果研究为煤炭安全、井下瓦斯治理、确定开发技术指标、单井配产、合理划分开发层系、煤层气高效开发以及制定中长期煤层气开发规划具有很好的参考价值。以晋城成庄矿区为例,将开发中后期排采效果检验井含气量等数据与邻近井原始含气量进行对比,分析3、9和15煤各煤层含气量在合层排采后的变化特征,以评价排采效果;并结合地质资料及现场排采动态进一步分析影响各煤层排采效果的主控因素。综合分析认为,成庄矿区经过多年地面煤层气多层合采,下部15号煤层比上部3号和9号煤层含气量降低更快。分析其原因认为成庄矿区15号煤层含气量降低较快的主要影响因素包括煤层渗透率、供液能力、储层压力及排采制度等。研究结果为剩余储量预测提供可靠的科学依据。   相似文献   

4.
关于煤层气排采动态变化机制的新认识   总被引:1,自引:0,他引:1  
对于影响煤层气排采动态的几个基本地质问题,从新的视角进行了分析。在此基础上,基于沁水盆地南缘寺河区块3号煤层上覆含水层的水文地质条件和岩石物理性质,模拟了煤层气井排采过程中储层压力降漏斗的大小,求出了储层压力降漏斗影响下煤层气解吸、产出的量值,得到的模拟排采曲线与实际排采曲线变化趋势吻合较好。本文认为,煤层中只有少量束缚水和一些重力水;煤层气井压裂增产形成的压裂缝使得煤层与顶板以上的含水层相互贯通,煤层气排采时抽排的地下水实际上应是煤层顶板上方含水层的承压水;抽水形成承压水头降落漏斗(即储层压力降漏斗),其影响范围内的煤层气得到不同程度的解吸和释放,这就是煤层气排采的动力学机制。  相似文献   

5.
沁水盆地南部15号煤层顶板灰岩特征对煤层气开采的影响   总被引:2,自引:2,他引:0  
煤层顶板的含水性对煤层气的开采有重要影响。沁水盆地南部上石炭统太原组15号煤层直接或间接顶板多为灰岩,其中以K2灰岩为主,连续分布。顶板泥岩较少,呈零散分布。灰岩的富水性对煤层气的排水降压有影响。因此,主要从灰岩的厚度展布、裂隙发育、与煤层的接触关系以及区域水文地质条件讨论其含水性对煤层气产能的影响。研究结果表明:(1)灰岩的含水性一般较弱,但当遇到断层或岩溶陷落柱较发育的部位,可能与其他含水层沟通,富水性较强。(2)15号煤层顶板灰岩的厚度与煤层气井的产水量并无直接关系,其裂隙较发育,但大多被方解石充填,导水和储水性能较差。(3)灰岩与15号煤层的接触关系有两种:一种是直接接触型,灰岩直接覆于15号煤层之上;另一种是间接接触型,灰岩与15号煤之间夹有泥岩、砂岩或14号煤层。直接接触型煤层气井的产水量、产气量比间接接触型高。间接接触型15号煤层直接顶板的岩性、厚度对产气、产水都没有太大影响。  相似文献   

6.
田庄煤矿主采煤层为石炭系太原组16上及17煤层,威胁煤层开采的地下水水源主要为十下灰、十三、十四灰和奥灰含水层。其中十三、十四灰含水层水力联系密切,可按同一含水层看待。十下灰岩水为16上煤的直接充水水源,十三、十四灰灰岩水和奥灰灰岩水为16上及17煤层的底板间接充水水源,在构造地段有可能转化为直接充水水源。在研究煤矿群孔放水试验的基础上,全面分析了氢氧同位素资料,结果表明井田内十下灰和奥灰含水层有各自的补、径、排系统,正常情况下水力联系较弱;十三、十四灰含水层与十下灰和奥灰含水层均发生着水力联系,在采掘及导水断层的影响下,其含水层间地下水联系变得更加密切。两种研究的结论基本一致,增加了成果的科学性和可信性。  相似文献   

7.
多煤层合层开发是提高煤层气井单井产量的关键技术,然而工程实践中大部分煤层合采存在层间干扰问题,致使合采产气量提升不明显。为了提高合层开发煤层气井的产气量与开发效率,以平顶山首山一矿煤层气合采四2煤层和二1煤层为例,基于煤层气赋存的地质条件,分析了合采层间干扰的影响因素及干扰规律,并提出了煤层合层开发层间干扰的控制方法。结果表明:造成四2煤层和二1煤层合层排采产量低的主要因素是储层压力梯度、临界解吸压力和渗透率。其中,两层煤的储层压力梯度分别为1.05 MPa/hm和0.519 MPa/hm;渗透率分别为0.25×10–3 μm2和1.4×10–5 μm2;临界解吸压力分别为1.16~1.69 MPa和0.40~0.46 MPa;另外,两煤层间距大,平均170 m左右。以上主要影响因素差异,造成两层煤合采时层间矛盾突出,干扰严重,总体产量低,井组煤层气开发效率低。基于现状问题,探索提出大间距多煤层大井眼双套管分层控制合采工艺方法,以实现两层煤分开控制达到合采产能叠加的目标,从而提高煤层气井合采产量和开发效果。研究认识将为平顶山及类似地质条件的矿区多煤层煤层气高效合层排采提供新的技术途径。   相似文献   

8.
本文根据山东旦镇井田下三煤三个主要充水含水层的水文地质特征及相互之间的水力联系情况,认为在下三煤底板奥陶系灰岩含水层中搞大口径抽水试验,技术经济上不合理。将大口径抽水试验放在下二煤顶板四五灰岩含水层中,则可排顶板水,达到降底板压的目的,符合建井生产实际。针对山东下三煤选择疏水降压层位问题,作者总结了几点经验供同行们参考。  相似文献   

9.
四川古蔺县石宝矿段位于古蔺复式背斜南翼的次级褶皱一石宝向斜东段,含煤地层为二叠系龙潭组。煤层气富集特征为张性断裂发育带附近含气量低,压性断裂附近含气量明显增大;影响煤层气富集因素有构造、储层(煤层)、围岩封盖性能和水文地质条件。全区较稳定可采的主要煤层C17、C25煤层厚度均较大;煤层在纵向上分布具规律性;区内长兴组灰岩与含煤岩系水力联系小,对煤层气影响不大;茅口组灰岩岩溶发育,地下水活动强烈,对C25煤层有较大影响。  相似文献   

10.
贵州兴达井田含煤9-17层,其中K1、K2、K3、K4四层煤较稳定,为主要可采煤层。依据钻孔资料,分析测井曲线形态与煤层顶底板以及上下标志层间的组合关系,对井田的煤岩层进行了对比。该井田K1煤层常分叉为K1上、K1下两个分层,其直接顶板高视电阻率异常,三叠系至K1煤层组间自上而下的缓坡状视电阻率曲线形态与自然伽马幅值相对较高的组合特征可作为二叠系含煤地层与三叠系地层划分依据;K2煤层位于龙潭组顶部,下距长兴组灰岩标志层10m左右,煤层本身高伽马异常;K3、K4煤层及其底板具较高的自然伽马特征。  相似文献   

11.
通过对矿区含、隔水层及断层带水文地质特征的分析和井下水文地质现象的观测,认为目前矿井开采煤层较浅,以二1煤顶板直接含水层充水为主,水量不大;但随采掘的延深,煤层下伏的太原组灰岩和奥灰含水层,会在断层的影响下,与其它含水层发生水力联系,对矿井开采形成威胁。根据对矿井充水因素的分析结果,指出目前矿井的充水强度不大,充水通道主要为断层带,在开拓-800m水平时,应注意构造破坏或隔水层薄弱地段,此地段有可能出现奥灰水突入矿井的危险。为防止矿井突水,提出了建立健全地下水观测系统,加强井下钻探和物探工作,重视邻近矿井老窿水监测等矿井水害防治工作建议。  相似文献   

12.
吴堡矿区首采地段水文地质特征及矿床充水条件分析   总被引:1,自引:0,他引:1  
从鄂尔多斯盆地东部地下水类型、含水岩组等区域水文地质条件入手,对陕北石炭二叠纪煤田吴堡矿区首期开采地段水文地质条件进行了分析。分析表明,区内第四系松散层含水层在首采区虽然分别较广,但水量相对较小,正常情况下与其下含水层贯通的可能性较小,对于煤矿开采影响较小;基岩风化裂隙潜水、太原组灰岩溶隙裂隙及砂岩裂隙承压水及奥陶系灰岩岩溶承压水是煤矿开采中最为主要的突水类型。从矿坑充水水源、充水通道和充水强度角度对首期开采地段进行了矿床充水因素的研究。研究认为,矿井充水水源为煤层顶底板砂岩裂隙水、灰岩裂隙溶隙承压水及奥陶系岩溶承压水;充水通道主要是煤层开采后顶板形成的冒落带和导水裂隙带以及底板受其承压水的影响而产生的破坏带。建议在矿井设计前对首采地段进行三维地震勘探,进一步查明区内断层性质、规模和易发生矿井涌水的部位,为建井设计、矿坑底板的突水和防治提供依据。  相似文献   

13.
沙曲井田位于山西河东煤田离柳矿区的中部,处在柳林泉域岩溶水系统的径流区。矿区奥灰水水量大,水位标高为+797~+802m,其中的4#煤底板承受奥灰水压2~5MPa,10#煤底板承受奥灰水压3~6MPa,属带压开采矿井。利用井田以往的地质及水文地质勘探资料,应用GMS软件建立矿区三维立体模型和地下水渗流的数学模型,实现水文地质结构三维可视化,使数学模型能正确地反映预测区的水文地质条件,达到数值仿真效果;应用有限差分数值法,对开采上组煤(3#+4#)和下组煤(8#+9#、10#)时,石炭系太原组灰岩含水层和奥陶系峰峰组含水层的疏降进行矿井涌水量预测,为矿井的安全生产和防治水工作提供依据。  相似文献   

14.
回顾了我国煤炭企业组织实施和合作开展的煤矿区煤层气勘探开发进程。经过三十多年攻坚克难、不懈努力,我国煤矿区煤层气地面开发技术研究、工程试验和产业发展均取得了可喜的成绩,不仅在山西晋城矿区首次取得国内外无烟煤的煤层气开发成功,实现了煤层气规模化商业化生产,而且在安徽淮北矿区取得了碎软低渗煤层顶板水平井开发煤层气技术的重大突破,实现了碎软低渗煤层的煤层气水平井单井的高产稳产;煤矿区采动区煤层气井开发在安徽淮北、淮南,山西晋城等矿区实现了规模化工程应用。同时,梳理总结了依托“十一五”—“十三五”国家科技重大专项项目,在煤矿区煤层气地面开发理论及技术研究方面取得的主要成果及其应用效果,包括:煤层气井密闭取心技术与设备、碎软低渗煤层地面煤层气垂直井强化增产技术、碎软低渗煤层顶板和煤层水平井分段压裂开发技术、多煤层分层控压合层排采技术、低煤阶低气含量煤层地面煤层气开发技术、煤层气井极小半径多孔旋转射流侧钻水平井技术,以及煤矿采动区煤层气产量预测技术等。在此基础上,根据全国煤矿区煤炭开采发展趋势和需求,提出今后煤矿区煤层气研究应重点关注3个方向:穿浅部采空区/采动区的深部煤层气与煤炭资源协调开发、低...  相似文献   

15.
通过对井田内水文地质条件及可采煤层赋存情况的分析,对井田内含水层和隔水层进行了划分,并对各主要含、隔水层(组、段)的岩性、厚度、埋藏条件、分布规律及水位、水质、富水性和补给、径流、排泄条件及各含水层(组、段)之间的水力联系进行了详细阐述。分析研究了矿井的充水因素,指出在留设防水(砂)煤岩柱条件下,开采3~10煤层时,新生界第四含水层(组)为间接充水含水层,直接充水水源为二叠系主采煤层顶底板砂岩裂隙水;开采10煤层时,正常情况下太原组1灰距10煤底板较远,对开采10煤层无直接影响,但在由断层作用导致断层间距缩短或对口的部位有突水危险。此结果为矿井今后煤层开采过程中降低水害威胁、制定防治水对策提供了帮助。  相似文献   

16.
蔚县矿区煤系基底奥灰含水层是煤层开采底板进水的主要充水含水层,已发生多次突水灾害,造成了巨大的经济损失。在分析矿区水文地质条件的基础上,对矿区奥灰岩的富水性进行了分区。通过对多年来矿区生产矿井奥灰水突入矿井资料收集整理及突水点的时空特征的研究,得出了矿区生产矿井奥灰水突水规律:首先与奥灰含水层富水性有关;其次是断层,即使是落差不大的小断层也是突水的薄弱地段;开采1号煤层,底板隔水层厚度与水头压力是控制奥灰水突入矿井的主要因素。提出了以防为主、带压开采、封堵结合,避免强行疏排的奥灰水防治水对策,并对矿井防治水措施提出了建议。  相似文献   

17.
彬长矿区煤的变质程度低,矿井瓦斯涌出量大,瓦斯治理形势日趋严峻。根据矿区地质勘查、井下及煤层气井所获得的地质资料显示,煤层气开发的主要目标4煤层厚度大,分布稳定,煤体结构好,渗透率和气含量相对较高,气含量最高可达6.29m3/t,估算煤层气资源量为132.743×108m3。依据煤层气资源丰度划分,矿区煤层气富集区总面积为87.41km2,资源量为40.06×108m3,主要分布在大佛寺井田,相对富集区主要位于胡家河井田中南部和孟村井田东部,贫气区主要位于孟村井田西部、文家坡井田。综合分析认为研究区煤层气开发地质条件相对较好,属于可以抽采煤层,大佛寺井田为地面煤层气勘探开发最具潜力的地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号