首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
何镜宇     
何镜宇先生1922年11月17日出生于北京。他是我国著名的沉积岩石学家。1946年毕业于北京大学理学院地质系,后在察哈尔省和北京地质调查所工作。1950年起在清华大学、北京地质学院、中国地质大学任教授、博士生导师,岩石学国家重点学科学术带头人之一,曾任中国地质学会沉积地质专业委员会委员和中国矿物岩石地球化学学会理事。何先生曾在清华大学地质系协助池际尚教授首次开了沉积岩石学课,随后参加筹建北京地质学院,并担任矿物学和岩石学教学工作,编写了第一本《沉积岩石学》教材,并与张瑞锡先生一起创建了北京地质学院沉积岩实验室。1956~1957年他参加了中国科学院和苏联科学院合组的黑龙  相似文献   

2.
《西安地质学院学报》2009,(4):F0002-F0002
刘宝琚院士 男,生于1931年9月,天津市人,著名地质学家。1956年毕业于北京地质学院研究生班,1991年当选为中国科学院院士。先后在北京地质学院、成都地质学院、成都地质矿产研究所工作。曾任国际地科联“全球沉积委员会”领导成员和全球沉积地质计划中国委员会主席,多次组织并参与了国际有关全球沉积地质的研究工作。  相似文献   

3.
公报     
经本会常务理事会1983年9月通讯审查,特别批准下列同志为本会会员。韩德馨男 1918年9月西南联大地质系毕业北京大学研究生部研究生美国密执安大学研究院留学研究生中国矿业学院北京研究生部教授煤田地质。秦蕴珊男 1933年6月 1956年北京地质学院普查系毕业中国科学院海洋研究所(青岛市南海路七号)副研究员海洋沉积。  相似文献   

4.
詹道江 《水科学进展》1998,9(2):202-202
我国着名的水文学家、水文教育家刘光文先生不幸于1998年3月6日在南京去世。享年88岁。先生是浙江杭州人。1933年毕业于清华大学,1936年获美国依阿华大学水利工程硕士,翌年又赴德国柏林工业大学从事研究工作。  相似文献   

5.
晓生 《地质学刊》2009,33(4):381-381
地层古生物学家。中国科学院南京地质古生物研究所研究员。1941年12月生于上海,籍贯浙江鄞县。1962年毕业于北京地质学院,1966年中国科学院南京地质古生物研究所研究生毕业。1997年当选为中国科学院院士。  相似文献   

6.
郝诒纯院士近照 ( 1 92 0年 9月 1日~ )郝诒纯教授是知名的地质学家、地层古生物学家。她是湖北咸宁人 ,1 92 0年 9月 1日出生 ,1 943年毕业于西南联合大学 ,同年考取清华大学研究生 ,1 957~ 1 959年在前苏联莫斯科大学和科学院进修。之后 ,她先后执教于云南大学矿冶系、北京大学地质系、北京地质学院和中国地质大学 ;现任中国地质大学 (北京 )教授、中国科学院院士、中国古生物学会和中国微体古生物学会名誉理事长等职。郝诒纯教授 1 956年与杨遵仪、陈国达教授合编了我国第一本高校《古生物学》教材。她协助杨遵仪教授创办了我国第一个…  相似文献   

7.
地矿部西安地质矿产研究所环境地质开发研究室主任、副研究员董发开同志,1966年9月毕业于北京地质学院水文地质工程地质系。长期从事水文地质和环境地质评价工作,取得了显著的经济效益和社会效益。特别是环境地质评价和开发研究,被地矿部确定为西安地质矿产研究所的一大研究特色,其事迹已编  相似文献   

8.
秦大河  姚檀栋 《冰川冻土》2011,33(2):223-226
我国杰出的地理学家、冰川学家、中国共产党优秀党员、中国科学院院士、中国现代冰川科学的开拓者和奠基人施雅风先生,因病医治无效,于2011年2月13日18时35分在江苏省人民医院不幸逝世,享年93岁.施雅风先生是江苏海门人,生于1919年3月21日.1942年毕业于浙江大学史地系,  相似文献   

9.
今年10月28日,黑岩大助教授逝世一周年了。我怀着沉痛的心情哀悼这位杰出的冰雪学前辈。 黑岩教授1916年9月6日出生于日本高知县,1934年3月毕业于高知工业学校,1940年3月毕业于东京物理学校,1943年5月进入创办不久的北海道大学低温科学研究所工作,1975年起任该所所长直到1980年4月退休。  相似文献   

10.
2011年9月3日,(古地理学报)主编冯增昭教授、副主编郑秀娟博士和编辑李新坡博士,中国地质科学院的乔秀夫研究员、苏德辰研究员、孙爱萍研究员、郭宪璞研究员和何碧竹研究员,中国石油大学(北京)纪友亮教授、研究生周勇、秦刚和余恩晓,中学生王正阳,在中国地质科学院的苏德辰和乔秀夫2位研究员的带领下,到北京西山永定河庄户洼河谷考察了中元古界雾迷山组软沉积物变形地层中的地质现象.  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

13.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

14.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

15.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

16.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

17.
Sulfide minerals in the Boulder batholith occur 1. as disseminated grains, visible in hand specimens; 2. in aplitic-pegmatitic pods and masses; 3. along joint and shear surfaces; 4. in hydrothermal veins; and 5. as minute masses within pyrite and silicate minerals and along intergranular sites. Hydrothermally altered rocks have an average sulfide content of 0.8 weight per cent, compared to an average of 0.01 per cent for unaltered rocks. Unaltered rock of the batholith may contain as much as 0.7 weight per cent sulfide. Sulfide inclusions in pyrite, the most abundant sulfide of the batholith, are common and represent a captured iss-phase which later changed to chalcopyrite plus pyrrhotite or mackinawite. Inclusions are most abundant, and more complex, in pyrites of hydrothermally altered and ore rocks. Electron-probe analyses show that pyrites of the Boulder batholith have very similar compositions to those found for pyrites from other ore deposits around the world.  相似文献   

18.
Terrestrial geochemistry of Cd,Bi, Tl,Pb, Zn and Rb   总被引:1,自引:0,他引:1  
About 2000 common magmatic, metamorphic and sedimentary rocks and rockforming minerals contained in 465 individual samples have been analyzed for 6 trace metals and potassium with high precision, mainly by combined distillation and AAS methods. Estimates of average abundances in the continental crust are: 98 ppb Cd. 82 ppb Bi. 490 ppb Tl, 14.8 ppm Pb, 77 ppm Zn and 98 ppm Rb (K/Rb: 223). These averages are close to the mean concentrations of the 6 elements in sedimentary and in low to medium grade metamorphic rocks. In relation to the upper mantle the earth's crust has very effectively accumulated Rb, Pb, Tl (and Bi). Cd and Zn are equally distributed between the upper and lower crust. Bi, Tl, Rb, Pb and K are accumulated in the upper relative to the lower continental crust by factors between 3.5 and 1.4. This is mainly due to higher concentrations in granites and lower abundances in granulites relative to gneisses and schists. The five metals form large ions with bulk coefficients less than one for the partition between metamorphic rocks and anatectic granitic melts. The major hosts of Rb, Tl, Pb and Bi in rocks are minerals with 8- to 12-coordinated sites such as mica, K-feldspar, plagioclase etc. (except for some preference of Bi for sphene and apatite). As examples of significant correlations those of Pb with Tl, K, Bi and Rb in mafic rocks and of Bi with K, Rb, Tl and Pb in sedimentary rocks can be reported. In granites and gneisses hydroxyl containing Fe2+-Mg-silicates are major host minerals for Zn and Cd. Except in some carbonate rocks Cd has no preference for Ca minerals.  相似文献   

19.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

20.
The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented. These lavas, with an areal extent in the order of 1002 km and almost 1 km thick in places, are located close to the intersection of the Woodlark spreading zone with the Pacific plate margin. They contain abundant olivine (Fo94-75) and diopside (Cr2O3 1.1-0.4%, Al2O3 1–3%), and spinels characterised by a large range in Cr/(Cr+Al) (0.85–0.46) and Mg/(Mg+ Fe++) (0.65–0.1). The spinels are Fe+++ rich, with Fe+++/ (Fe++++Cr+Al) varying from 0.06 to 1.0. A discrete group of spinels with the highest Cr/(Cr+Al) (0.83–0.86) and lowest Fe+++ contents are included in the most Mg-rich olivine (Fo91–94) and both may be xenocrystal in origin.The lavas, which range between 10–28% MgO, define linear trends on oxide (element) — MgO diagrams and these trends are interpreted as olivine (0.9) clinopyroxene (0.1) control lines. For the reconstructed parent magma composition of these arc picrites, ratios involving CaO, Al2O3, TiO2, Zr, V and Sc are very close to chondritic. REE patterns are slightly LREE — enriched ((La/Sm)N 1.3–1.43) and HREE are flat. All lavas show marked enrichments in K, Rb, Sr, Ba, and LREE relative to MORB with similar MgO contents, but the TiO2 content of the proposed parent magma is close to those of postulated primary MORB liquids. It is proposed that the arc parent magma was produced by partial melting of sub-oceanic upper mantle induced by the introduction of LILE — enriched hydrous fluids derived by dehydration and/or partial melting of subducted ocean crust and possibly minor sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号