首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 193 毫秒
1.
北京市平原区土壤中PAHs分布特征与来源分析   总被引:2,自引:1,他引:1       下载免费PDF全文
PAHs的性质使其容易在土壤中富集,且因难降解和毒性大而成为土壤污染治理的重点。本研究测试了北京市东南部地区土壤和地下水中的PAHs含量,同时对近年来北京平原区土壤中PAHs的其它监测数据进行了联合分析。研究结果表明:(1)北京市平原区土壤中16种PAHs的平均值为936.9μg/kg,处中度污染水平且接近重度污染;(2)土壤中PAHs的来源表现出一定的地带分布规律,其中林地和果园的污染源主要为石油输入源,其它区域的污染源主要为不同类型的燃烧源(木材、煤、石油、汽油等)或混合源;(3)地下水中PAHs的种类明显比土壤中的少,但是以具较强毒性的二环和三环PAHs为主,主要原因为低环的PAHs主要以溶解态形式在土壤中迁移,容易进入浅层地下水。  相似文献   

2.
随着城市迅猛发展,城市土壤性质发生显著变化,不同功能区之间呈现明显差异性。为了深入讨论人为影响方式和程度、污染来源的差别对土壤碳库(特别是黑碳)的影响,本研究以北京市为对象,对比研究了城区和郊区不同功能区(公园、居民区、道路绿化带)土壤有机碳(SOC)含量、黑碳(BC)含量以及含量比值(BC/SOC)的特点,并通过BC/SOC指标对土壤受到的人类活动影响方式和程度进行详细讨论。结果显示,北京市城区不同功能区的土壤SOC富集程度不同,且公园和居民区土壤在人为管理下SOC含量趋于平均;而郊区不同功能区的SOC含量值接近,表明其受人为影响较小,更接近于自然土壤。城区不同功能区的土壤BC含量存在较大差异,由大到小是公园(0.60%~2.28%,平均值为1.56%)、道路绿化带(0.12%~2.20%,平均值为0.62%)、居民区(0.11%~1.15%,平均值为0.35%),其中公园内区域性的翻种、施肥使得BC大量聚集,道路绿化带受到来自交通环境的强烈影响;而郊区不同功能区的BC含量值低且接近,代表了区域土壤BC含量背景值。土壤BC/SOC总体介于0.11和0.5之间,且郊区BC/SOC小于城区,指示了化石燃料和生物质的燃烧均是城区和郊区土壤BC物质的来源,但所占比重不同,且城区是郊区土壤黑碳的重要来源。另外,城区个别地区BC/SOC显著偏高,反映了BC/SOC不但指示土壤污染程度,同时与城市化时间、特定的人类活动密切相关。  相似文献   

3.
土壤中的多环芳烃(PAHs)会威胁人类健康和生态环境安全。为掌握北运河流域(北京段)土壤中PAHs的分布特征及其形成机制,采用克里格插值、主成分分析-多元线性回归等多元统计方法,结合同分异构体比值法对该区域表层土壤中16种优控PAHs的质量分数、分布趋势、空间分布特征及其污染来源进行了研究。结果表明:(1)研究区216件土壤样品中16种PAHs均被检出,且主要为高环PAHs(4~6环),总PAHs的质量分数范围在10.5~19 466.5μg/kg,受污染土壤样品占29.63%;(2)表层土壤中的PAHs在东西及南北方向上均呈现出中部高、两端低的趋势,在空间分布上总体表现为北部区域及中部城区含量较高、其他地区相对较低的特征,且由于人为活动影响导致个别点位PAHs富集,存在点源污染或局部污染;(3)PAHs同分异构体比值法及主成分分析法研究表明,研究区内PAHs的来源为以煤/生物质燃烧及交通燃烧为主、石油泄漏等石油化工源为辅的混合源,多元线性回归方法分析后得到2者的贡献率分别为89%和11%。研究结果可为研究区的污染防控、土地质量评价和国土空间规划等工作提供有力支撑。  相似文献   

4.
吉林省中部农业土壤中PAHs的分布及风险评价   总被引:6,自引:0,他引:6  
为了探明吉林省中部农业土壤中PAHs的污染现状,系统地测试了该区土壤中PAHs的含量,对土壤中16 种PAHs的分布特征及其生态风险进行了探讨.结果表明:吉林省中部农业土壤中PAHs的质量分数为144.5~2 355.0 μg/kg,且水田土壤中PAHs的含量高于旱田土壤中的含量;土壤PAHs的来源既有燃烧源,又有石油类污染源;目前土壤PAHs以轻微污染水平为主,生态风险评价表明土壤PAHs的生态风险较小.  相似文献   

5.
卢丽  王喆  裴建国 《现代地质》2015,29(2):324-330
为了研究岩溶地下河系统内多种介质中多环芳烃(PAHs)的浓度、组成和分布特征,以广西某典型岩溶地下河为例,利用2013-2014年同期的空气、地下河水、沉积物和土壤样品测试数据,对不同环境介质中16种多环芳烃(PAHs)的浓度、组成和分布特征进行对比分析。结果表明,空气和地下河水以2~3环PAHs为主,其中空气的2~3环PAHs比例为71.66%,地下河水的2~3环PAHs比例为54.84%;沉积物和土壤以4~6环PAHs为主,其中沉积物的4~6环PAHs比例为54.26%,土壤的4~6环PAHs比例为65.06%;环境介质中PAHs的浓度变化为:上游<中游<下游,这与污染源排放、吸附作用等相关;同一区域不同介质的2~3环PAHs百分比为:地下河水>沉积物>土壤,而4~6环PAHs百分比则相反。  相似文献   

6.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一种难降解、毒性强的致癌性污染物,其广泛分布于各环境介质中,陆地环境中90%的PAHs累积在土壤中。随着资源的开发,由油品泄漏、垃圾渗滤、污水排放等行为造成的多年冻土区PAHs土壤污染问题日益突显,并且在气候变化背景下,多年冻土中的PAHs具有重新释放而造成二次污染的风险,多年冻土区土壤多环芳烃污染分布特征和迁移规律研究对评估多年冻土区生态环境风险,防治土壤持久性有机物污染,保障广大多年冻土居民生命健康安全具有重要意义。通过回顾目前国内外多年冻土区土壤中PAHs污染的相关研究,分析发现多年冻土区未受污染的土壤中PAHs的污染水平远低于中低纬度人口密集区域,可代表地球土壤中PAHs的背景值;高纬度或高海拔的地理位置以及严寒的气候使得冻土区土壤中PAHs一个普遍且最重要的来源是大气远距离传输;活动层的冻融作用主要通过改变土壤理化性质和控制水分运移方向影响PAHs在多年冻土区土壤中的垂向分布特征,多年冻土的低渗透性具有阻碍PAHs垂向迁移的作用。综合分析已有研究成果,表明目前冻土区土壤PAHs污染研究还是大量集中于表层土壤中的污染分布调查和来源解析,而关于PAHs在活动层和多年冻土层中的垂向迁移研究还仅限于对其在土壤剖面中分布状况的解释性分析,冻融作用对PAHs在土壤中的迁移、转化和归宿的影响机制还不清楚。未来多年冻土区土壤中PAHs的研究将集中于迁移转化机理与污染治理技术两方面,针对PAHs在多年冻土区土壤中迁移行为的模拟模型亟待研究开发,以实现PAHs污染储量和迁移通量的定量预测;此外,多年冻土区土壤污染问题的深入研究还需要紧密联系多圈层、多界面、多介质、多要素以及多目标污染物而开展。  相似文献   

7.
为研究长江三角洲典型农用地土壤多环芳烃的组成及来源,系统采集华东某地区农用地表层土壤样77个,对16种优先控制的多环芳烃(PAHs)单体含量进行测定。结果表明:研究区农用地土壤中Σ16PAHs浓度范围为18.60~1278.67μg/kg,平均浓度为233.57μg/kg;PAHs组成以2环至4环的中低环组分为主,占85.05%;同分异构体比值法和主成分分析法显示研究区农用地土壤中多环芳烃主要来源于石油泄漏及煤与生物质燃烧。  相似文献   

8.
表层岩溶带土壤中多环芳烃分布特征及来源解析   总被引:3,自引:0,他引:3  
利用气相色谱-质谱联用仪(GC-MS)对表层岩溶泉域土壤中的16种优控的多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)含量进行了分析,并对其组成、污染水平和来源进行了探讨。结果表明,16种优控PAHs在表层岩溶泉域土壤中的检出率为100%,其含量介于439.19~3329.72ng/g之间,平均值为1392.44ng/g,7种致癌性PAHs占总量的26%。PAHs的组成特征受地形的控制,随着海拔升高,低环PAHs所占比例升高,高环PAHs比例降低。同分异构体比值分析表明,研究区土壤中的PAHs主要来自于煤、生物质和石油的燃烧排放。研究区土壤中16种PAHs的TEQcarc值介于18.65~501.13ng/g,平均值为140.57ng/g。7种致癌性PAHs占总TEQcarc的比例达到96.8%。研究区表土中,后沟泉域的污染程度最大,次之是兰花沟泉域和柏树湾泉域,水房泉泉域的污染程度最小,但由于柏树湾泉域松针落叶中BaP、PAHs含量较高,松针落叶中PAHs含量分别高达36.36ng/g和2370.1ng/g,土壤生态风险评价中应考虑松针落叶层的潜在影响。   相似文献   

9.
杨柯  姜建军  刘飞  白中科 《地学前缘》2016,23(5):281-290
原煤的开采、储存、运输及其加工利用过程是多环芳烃(PAHs)污染的主要来源。由于缺乏相关系统调查数据,其对煤矿复垦区土壤环境质量的影响尚不明确。平朔煤矿复垦土地主要作为耕地利用,了解其PAHs污染状况直接关系粮食安全和人体健康。该研究通过野外实地调查,开展了平朔煤矿复垦区表层土壤中多环芳烃(PAHs)的毒性风险分析研究。在整个平朔煤矿45 km2范围内,以500 m×500 m间距为基准,按照不同用地类型,采集了0~20 cm深度土壤样品179个,再按照1 km×1 km单元格组合后分析。使用安捷伦高分辨气相色谱低分辨质谱进行目标物的检测。加入代用标准2氟联苯(2 FBP)以进行回收率控制。研究结果表明:土壤中16种EPA PAHs的含量范围为213.60~2 513.20 ng·g-1,均值为717.09 ng·g-1。PAHs成分特征显示主要以3~4环为主(52%),5~6环次之(42%),2环所占比例最低(6%)。使用相关分析法判定,主要污染来源为原煤。毒性风险分析结果显示,平朔煤矿土壤PAHs存在一定生态风险,当土地重新作为农田加以利用时,需要加以关注。  相似文献   

10.
孔祥胜  苗迎 《地球学报》2014,35(2):239-247
为证实大气干湿沉降物是岩溶地下河中多环芳烃(PAHs)的来源,研究选择了某城市典型的岩溶地下河水源地作为研究地点,采用大气干湿采样器、聚氨酯泡沫(PUF)大气被动采样器分别采集大气及其干湿沉降物样品,同时采集地下河水样和分层采集流域土壤,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物。结果表明,地下河流域大气干湿沉降中PAHs的干湿沉降通量为147.26 ng·(m2·d)-1,流域PAHs沉降量为1943.8 g;大气中的PAHs浓度为45.33 ng·m-3;地下河水中PAHs浓度平均值为220.98 ng·L-1;土壤中PAHs浓度为38.72 ng·g-1;大气、降雨和土壤中PAHs组成以2~3环的萘、芴、菲、荧蒽、芘5种为主,地下河水中以芴、菲、荧蒽、芘、苯并[a]蒽、苯并[a]芘6种为主。利用地下河多介质中的16种PAHs成分谱、特征比值结合它们的物理化学性质进行PAHs的源解析,研究显示大气干湿沉降是岩溶地下河水中多环芳烃的主要污染源之一,这归因于岩溶地区防污性能的脆弱性。  相似文献   

11.
近些年,随着我国城市化进程不断加快,土壤中多环芳烃污染已经成为威胁土壤环境质量和人体健康的主要因素。文章采集了北京市通州某改造区15件表层土壤(0~20 cm)样品,利用GC-MS分析技术,研究了土壤中美国环境保护署(USEPA)优控的16种多环芳烃(PAHs)的含量及组分特征,根据多环芳烃的空间分布特征和特定成分之间的浓度比值结合多元统计法分析了其污染来源,初步评价了其污染水平,并进行健康风险评价。结果表明:表层土壤中16种多环芳烃含量范围为6.57~8 307.2 μg/kg,均值为1 004.08 μg/kg。多环芳烃组分特征及Fla与(Fla+Pyr)、BaA与(BaA+Chr)的相对质量比值特征显示改造区是燃煤和汽车尾气混合型来源;多元统计后发现石油烃类污染源和化石燃料燃烧源是两种主要成分。最后参照《污染场地风险评估技术导则(HJ 25.3—2014)》对土壤中PAHs进行了健康风险评价,除苯并(a)芘(BaP)致癌风险值略偏高不可接受外,其余致癌与非致癌风险值均可接受。  相似文献   

12.
太原市区土壤中多环芳烃污染特征研究   总被引:2,自引:0,他引:2  
采用1个样/km2的密度,1个分析组合样/25km2的方法,对太原市区土壤中多环芳烃进行了调查。结果表明,太原市区土壤中多环芳烃的平均含量为8.65μg/g;空间分布上北高南低,高值点主要位于工业区及交通要道地段;组成上以四环及四环以上的多环芳烃为主。通过与国内外城市土壤的对比可知,太原市土壤PAHs污染已相当严重,其来源主要是煤炭的燃烧。太原市工业布局、能耗类型和地理位置是造成土壤PAHs污染的主要原因。  相似文献   

13.
An extensive soil survey was carried out in Shanghai to investigate the spatial distribution and possible sources of polycyclic aromatic hydrocarbons (PAHs) in urban soils. Soil samples were collected from highways, iron-smelting plants, steel-smelting plants, shipbuilding yards, coking plants, power plants, chemical plants, urban parks, university campuses and residential areas and were analyzed for 16 PAHs by gas chromatography with mass detection. High PAH concentrations were found in all locations investigated, with mean values of soil total PAH concentrations in the range 3,279–38,868 μg/kg DM, and the PAH concentrations were significantly influenced by soil organic matter content. Soil PAH profiles in all districts were dominated by PAHs with 4–6 rings. Principal components analysis and diagnostic ratios of PAHs indicate that they were mainly derived from coal combustion and petroleum but in soils from highways the PAHs were derived largely from vehicle exhaust emissions. The high concentrations of PAHs found indicate that many urban soils in Shanghai represent a potential hazard to public health.  相似文献   

14.
Geochemical analysis of street dusts was conducted to evaluate the environment of Dhaka City, Bangladesh. Dust samples were collected from different areas (industrial, commercial, and residential) of Dhaka City, and their major, trace and rare earth elements (REE) were determined. Samples from the commercial area had Pb concentrations double those of the industrial and residential areas. Contents of Zn, Cu, Ni, and Cr in the industrial areas were greater than those in the commercial and residential areas. The REE patterns of all dusts in Dhaka are similar and are comparable to the average upper continental crust. The condition of the Dhaka environment was compared to that in Japan and other baseline sediments using Zn–Fe2O3 and Pb–Fe2O3 diagrams. Zn–Fe2O3 trends for the dusts show steep inclination compared to the baseline sediment and the Japanese urban sediment trends. Dhaka lake data show enrichment of Zn over the dusts, suggestive of Zn pollution from poorly controlled industrial sources. In contrast, on the Pb–Fe2O3 diagram, Dhaka dusts have greater Pb contents than lake sediments, probably due to the higher traffic density in the commercial area compared to the residential area including the area around the lake. The results suggest that higher levels of Pb and Zn in street dusts in Dhaka can most likely be attributed to the anthropogenic sources like vehicle emissions to the atmosphere and a rapid development.  相似文献   

15.
北京市冬季大气PM2.5中多氯联苯的污染水平与分布   总被引:3,自引:2,他引:1  
2008年1月同时采集了北京市市区/交通干道(中国地质大学(北京)东门及测试楼顶)、工业区(首钢集团焦化厂、高井热电厂)和背景点(十三陵)大气颗粒物PM2.5样品。依据US EPA 1668A 方法,采用同位素稀释、高分辨率气相色谱/高分辨率质谱(HRGC/MS)联用技术,对比分析了PM2.5中19种多氯联苯(PCBs)的质量浓度、分布特征及来源。结果表明, 5个采样点PM2.5的质量浓度范围为101.85~145.57 μg/m3,日均值为119 μg/m3,比美国1997年制定的日均标准(65 μg/m3 )高83%,属严重污染。 PM2.5中∑PCBs的质量浓度和毒性当量(TEQ)分别为7.2~16.2 pg/m3 (平均值10.9 pg/m3)、8.29~17.81 fgWHO-TEQ/m3 (平均值13.58 fgWHO-TEQ/m3),与其他国家和地区比较,北京市大气PCBs的污染处于较低水平。PCBs最高浓度出现在工业区,其次是市区,背景点最低,化石燃料的不完全燃烧是北京市PCBs的主要来源。研究成果将为北京市大气环境中持久性有机污染物(POPs)的污染防治提供科学依据。   相似文献   

16.
Studies of polycyclic aromatic hydrocarbons (PAHs) in the surface soil were conducted in Huizhou City, which is located in the Pearl River Delta, South China. Sixteen PAHs in 42 soil samples were detected. The results showed that 4 components of PAHs were detectable in all soil samples, and other 12 components were also detectable to some extent. The total PAHs contents range from 35.40 to 534.5 μg/kg with the mean value of 123.09 μg/kg. Soil in Huizhou was slightly polluted by PAHs according to Maliszewska-Kordybach’s study. It can be confirmed that the increase of PAHs contents in the surface soil of Huizhou City is closely connected to human activities. Multivariate analysis was also made in this study. Principal component analysis was used to constrain their origins, and 3 principal components (PCs) were extracted. The results showed that coal combustion and oil spilling made the major contributions to PAHs. Cluster analysis was made and 16 priority PAHs were classified as 4 sorts, and the result revealed the differences in environmental behavior, chemical properties and sources of PAHs.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are considered as one of the most important groups of organic environmental contaminants due to their toxicity, persistence and ubiquity. PAHs have been monitored in urban road dust at various locations worldwide in about last three decades. Resuspension of road dust containing PAHs is an important route of human exposure to PAHs. This paper collates the available information on reported concentrations of PAHs in urban road dust at various worldwide locations classified as industrial, residential, traffic, city and commercial and other areas, reported sources of PAHs and related interpretations. The available information has been reviewed and documented country-wise. Variation in PAHs concentrations over various worldwide locations have been scrutinized, and interestingly, most of the reported average PAHs concentrations were found to be distributed within a very narrow range of values, implying only little variation in average PAH concentrations in spite of great distances between locations, climatic variation and differences in anthropogenic activities.  相似文献   

18.
The present study examines variation of ambient aerosol mass and number concentrations in Chiang Mai, Thailand during winter. Aerosol particle samples were collected and measured at four different sites, representative of urban, industrial, residential and rural areas during daytime between December 2003 and January 2004. Average 10 h particulate matter (PM) mass concentrations were found to be in the range of 75–290 ì g/m3, with average value of 149 ± 45 ì g/m3. Urban and industrial areas appeared to have higher PM loading than residential and rural areas. Number concentration and size distribution of particles in the range of 0.3–10.0 ìm did not exhibit any marked variation between sites. Relatively stable number concentrations were reported. Temporal variation of number concentrations was not clearly significant. No short term peak observed during rush hours. During sampling period, the average number concentration for 0.3–0.5, 0.5–1.0, 1.0–5.0 and 5.0–10.0 ìm were 6.60 × 106, 1.18 × 106, 2.11 × 105 and 1.12 × 104/m3, respectively. Particles with diameter smaller than 1.0 ìm accounted for over 90 % of the total number concentration. Concentrations of major metals were determined by atomic absorption spectrophotometer (Pb, Fe, Al, Si, Cr, Cd, Ni, Zn) and flame photometer (K, Na and Ca). Data obtained were used to identify probable sources via a multivariate analysis. Si, Na, Fe, Ca, Al and K were the six dominant elements in the airborne PM. Principle component analysis was carried out and major sources of airborne PM in Chiang Mai were determined, namely, (1) long distance sources such as sea spray, earth soil and industrial combustion, (2) short-distance sources such as crustal re-suspension, vehicular related emissions and vegetation burning, and (3) the unknown distance sources with low influence of traffic emissions.  相似文献   

19.
Black carbon (BC) in soils plays a key role of carrying hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs). However, little is known about the spatial distribution, sources of BC and its relationship with PAHs in urban soils. We studied BC, total organic carbon (TOC) and PAHs concurrently in 77 soils collected from downtown area, suburban and rural area and industrial area of Shanghai, China. BC was determined by both chemical oxidation (dichromate oxidation, BCCr) and chemo-thermal oxidation (CTO-375, BCCTO). BC sources were identified qualitatively by BC/TOC concentration ratios and BC-cogenerated high molecular weight (HMW) PAH isomer ratios and quantitatively by principal component analysis followed by multiple linear regression (PCA-MLR). Results showed that BCCr concentration (4.65 g/kg on average) was significantly higher than BCCTO (1.91 g/kg on average) in Shanghai soils. BCCr concentrations in industrial area were significantly higher than those in other two. Stronger correlation was found between PAHs and TOC, BCCr than that between PAHs and BCCTO, which indicates the possibility of PAHs being carried by charcoal and other organic matters thus negating its exclusive dependence on soot. Charcoal was therefore suggested to be taken into account in studies of BC and its sorption of PAHs. BC/TOC ratios showed a mixed source of biomass burning and fossil fuel combustion. PCA scores of BC-cogenerated HMW PAHs isomer ratios in potential sources and soil samples clearly demonstrated that sources of BC in urban soils may fall into two categories: coal and biomass combustion, and traffic (oil combustion and tire wear). PCA-MLR of HMW PAHs concentrations in soil samples indicated that coal and oil combustion had the largest contribution to BC in urban soils while tire wear and biomass combustion were important in downtown and rural area, respectively, which indicated they were main sources of HMW PAHs and presumably of BC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号