首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rivers of western India are monsoon dominated and have been so throughout the late Quaternary. Sediment accumulation in these river basins has been controlled by climatic and tectonic changes over a time span from the Late Pleistocene to the recent. The lithofacies assemblages associated with the various sediment archives in the Narmada basin range from the boulders of the alluvial fans to overbank fines on the alluvial plains. Estimates, based on clast size, of stream power and competence, bed shear stress and discharge reveal that hydrological conditions during the Late Pleistocene (∼90 ka) were comparable to the present day. The size of the transported clasts and the thickness of the accumulated sediment indicate the influence of basin subsidence rather than an increase in discharge. Discharge estimates based on sedimentary structures preserved in the alluvial-plain facies suggest that the channel had a persistent flow, with a low width-depth ratio and large meander wavelength. The hydrological changes during the Holocene are more pronounced where the early Holocene is marked by a high-intensity hydrological regime that induced erosion and incision of the earlier sediments. The mid-Holocene stream channel was less sinuous and had a higher width-depth ratio and a higher meander amplitude in comparison with the present-day channel. Palaeo-fluvial reconstructions based on the sediment archives in the alluvial reach of the river basin are important tools in understanding the long-term hydrological changes and the intricate fluvial architecture preserved in the Narmada River basin ensures scope for detailed studies to identify phases of weak and enhanced hydrological regimes.  相似文献   

2.
A channel account approach is proposed to estimate longitudinal changes in runoff along large river systems. This new method provides a quantitative basis for describing the fluvial transport of suspended particulate material and dissolved substances. This method includes an evaluation of basic elements of water balance in separate sections of the river network and subsequent correction of channel accounting equations for the entire system using a maximum likelihood principle. To calculate water discharges of tributaries that have no hydrological information, structural analysis of river network is performed. This approach provides less error in comparison with traditional methods of estimating lateral inflow. The method is used to trace water discharge with increasing distance along the Lena river basin and to evaluate the contribution of geologically and lithologically uneven sub-basins in water discharge formation during a summer low water period.  相似文献   

3.
内陆河流域水文过程研究的一些科学问题   总被引:5,自引:0,他引:5  
水科学研究的发展,对水文科学提出了新的挑战,即如何在流域、区域和全球尺度进行学科交叉、综合集成和协同研究,从而更全面地认识水在地球资源和环境变化中的作用,认识水圈及其与大气圈、岩石圈和生物圈的相互作用。为了解内陆河流域水文循环和水量平衡各分量之间的变化和转化关系及其与生态和环境之间的相互作用,以及对全球变化和人类活动的响应和反馈,基于内陆河流域上游山区径流形成区、中游人工绿洲水资源开发利用区和下游荒漠绿洲径流散失区的流域水文循环特征,从能水通量、生态和生物地球化学过程讨论了山区水文过程;从生态水文、尺度转换、阈值和反馈讨论了水文和植被的相互作用;从国外提出的关键作用带的概念讨论了内陆河流域地下水—土壤—植被作用层的水文过程。提出了开展内陆河流域水文过程观测和研究的基本框架。  相似文献   

4.
The impact of increased temperature on the Third Pole, as the Himalayas is referred to, and the likely cascading impacts on the general downstream hydrology have been widely noted. However, the impact on fluvial geomorphology has not received specific attention. Change in the glacial domain in terms of melt increase will change discharge and sediment flux into fluvial system, which will induce changes in fluvial processes and forms. The present work attempts to study this process-based glacio-fluvial coupling in the two neighbouring glaciated river basins in the Northwest Himalaya, viz., the Sutlej and the Yamuna river basins till the mountain front. A total of 194 samples of river, tributary and groundwater of pre- and post-monsoon seasons in the two river basins were analysed for stable isotopes. The trend of δ18O and electrical conductivity along the mainstream gives qualitative idea on the influence of headwaters in the downstream of the catchment thereby allowing inference on melt contribution. Further, two component mixing model using stable oxygen isotope of two seasons water samples showed that melt contributes about 41.1–66.8 and 6.6–10.6% at different points to the total river discharge in the Sutlej and the Tons River (the glaciated, major tributary of the Yamuna River) basins, respectively. For different scenarios of increase in melt, stream power increase in the Sutlej River basin is significant as opposed to the Tons River. River channel in the Sutlej River basin will be significantly more impacted in comparison with the Yamuna River system.  相似文献   

5.
《Quaternary Science Reviews》2007,26(22-24):2801-2822
Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga–Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability—both spatial and temporal—in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.  相似文献   

6.
李胜利  马水平  周练武  黄晓娣  韩波  李航 《地球科学》2022,47(11):3960-3976
河流辫曲转换与共存是自然地理学、水力学、河流沉积地质方面的研究热点问题,也对古代河流沉积环境恢复与储层预测有重要借鉴意义.首先对河流辫曲转换与共存特征的主要影响因素进行了探讨,指出构造变动与地貌单元、坡度(坡降)的陡缓差异、物源远近与水动力条件、气候变化与植被发育状况、海/湖平面变化等主要因素控制着辫曲河型转换过程,其中构造变动与地貌单元是最为关键因素;然后总结了辫曲转换与共存这一理念对古代河流沉积恢复研究的4点启示;再以鄂尔多斯盆地大牛地气田中二叠统下部的下石盒子组为例,结合测井曲线特征、地震属性与砂岩厚度分布规律,把辫曲转换与共存的理念应用于古代河流沉积环境恢复之中,最终再现了气田区H21砂层河流沉积分布格局,明确了该区北辫南曲、辫曲转换与共存的规律,指出在辫曲转换地带与相邻的曲流河发育的区域更易于产生废弃河道.   相似文献   

7.
根据水动力学、河流动力学、热力学、河冰水力学及固体力学等原理,针对松花江上游白山河段具体特征,建立了河冰数学模型,并应用有限差分计算方法,对白山河段冬季冰情演变进行了精确模拟。应用该河段1958-1973年共15年完整的地形、气象、水文、热力、冰情等原型观测资料,分别进行了模型参数率定及冰情数值模拟。研究结果表明:白山河段的封冻首先开始于白山坝址下游4 km的大崴子河段,然后封冻边缘逐渐上溯,最终到达松14断面;计算的白山河段冰花堆积体外形与河床纵剖面呈相似趋势;各种水力及冰情要素的数值计算结果和实测值吻合较好,所建立的数值模型能较好地模拟该河道的冰情。研究结果对东北地区河流冬季冰情研究及冰害防治具有一定的借鉴意义。  相似文献   

8.
This study reports the nature and timing of Quaternary fluvial activity in the Fitzroy River basin, which drains a diverse 143,000 km2 area in northeastern Queensland, before discharging into the Great Barrier Reef Marine Park. The catchment consists of an extensive array of channel and floodplain types that we show have undergone large-scale fluvial adjustment in-channel planform, geometry and sinuosity. Optically stimulated luminescence (OSL) dating of quartz sediments from fifteen (3–18 m) floodplain cores throughout the basin indicates several discrete phases of active bedload activity: at ~105–85 ka in Marine Isotope Stage (MIS) 5, at ~50–40 ka (MIS 3), and at ~30–10 ka (MIS 3/2). The overall timing of late Quaternary fluvial activity correlates well with previous accounts from across Australia with rivers being primarily active during interstadials. Fluvial activity, however, does not appear to have been synchronous throughout the basin’s major sub-catchments. Fluvial activity throughout MIS 2 (i.e. across the Last Glacial Maximum) in the meandering channels of the Fitzroy correlates well with regional data in tropical northeastern Queensland, and casts new light on the river response to reduced rainfall and vegetation cover suggested by regional palaeoclimate indicators. Moreover, the absence of a strong Holocene signal is at odds with previous accounts from elsewhere throughout Australia. The latitudinal position of the Fitzroy across the Tropic of Capricorn places this catchment at a key location for elucidating the main hydrological drivers of Quaternary fluvial activity in northeastern Australia, and especially for determining tropical moisture sources feeding into the headwaters of Cooper Creek, a major river system of the continental interior.  相似文献   

9.
Morphological mapping plays an essential role in understanding river processes. Evaluation of the morphological parameters requires preparation of basin, upstream and downstream, stream link, stream network, stream order, flow direction, flow accumulation, and digital elevation model, which help to understand the nature of the river. Assessments of morphological digital maps provide upstream and downstream flow rates, slope variation, sedimentation, and specific stream erosive power in river systems. The river patterns of the study area mainly controlled by geological nature. Therefore, this paper discusses conceptual foundations and illustrates how mapping approaches can be used to produce morphological information of Tirumalairajan river systems.  相似文献   

10.
River planform features and sinuosity are widely acknowledged as important geomorphological indices that control the channel hydraulics and stream power which determines the flow velocity and sediment supply to downstream reaches. Despite their significance, there has been little study about these indices in mighty Yamuna River for understanding the topographic control and hydraulic regime. This paper investigates the channel planform features and sinuosity by employing topographic map, digital elevation model (DEM), and satellite imageries to elucidate the morphological, sedimentological, and hydrological characteristics of the channel. Based on sinuosity index (varies between 1.02 and 1.41), the river segments are categorized into straight (segments 1, 3, 4, 5, 6), sinuous (segments 2, 7, 8, 9, and 11), and meandering (segment 10). The parameters analyzed to find out the influencing factors on sinuosity indicate geomorphological and anthropologic control in their development. Tectonic control of sinuosity in the studied stretch is ruled out as it is flowing through an alluvial plain with low rate of discharge.  相似文献   

11.
Watershed development and management plans are more important for harnessing surface water and groundwater resources in arid and semi-arid regions. To prepare a comprehensive watershed development plan, it becomes necessary to understand the topography, erosion status and drainage patterns of the region. This study was undertaken to determine the drainage characteristics of Pageru River basin using topographical maps on a scale of 1:50,000. The total area of the Pageru River basin is 480 km2. It was divided into X sub-basins for analysis. The drainage patterns of the basin are dendritic and include a sixth order stream. The quantitative analysis of various aspects of a river basin drainage network characteristics reveals complex morphometric attributes. The streams of lower orders mostly dominate the basin. The development of stream segments in the basin area is more or less affected by rainfall. The elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The erosional processes of fluvial origin have been predominately influenced by the subsurface lithology of the basin.  相似文献   

12.
设计水文条件是流域水环境容量分析的重要前提,然而在一些小流域,水文站点相对较少,给设计水文条件计算带来一定难度。本文采用区域化方法,以袁河流域为例,根据其现有的水文站及其毗邻锦江流域水文站的水文资料采用一元线性函数建立了设计流量和集水面积的关系,采用幂指函数Y=aQb分别建立了流量与流速、平均水深及河宽的关系。根据建立的模型对袁河流域各控制断面的设计流量、设计流速、平均水深及河宽进行了计算,从而为水文站较少流域设计水文条件的计算提供了范例。  相似文献   

13.
In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river–aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river–aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river–aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.  相似文献   

14.
Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.  相似文献   

15.
High-mountain basins provide a source of valuable water resources. This paper presents hydrological models for the evaluation of water resources in the high-mountain Zêzere river basin in Serra da Estrela, Central Portugal. Models are solved with VISUAL BALAN v2.0, a code which performs daily water balances in the root zone, the unsaturated zone and the aquifer and requires a small number of parameters. A lumped hydrological model fails to fit measured stream flows. Its limitations are overcome by considering the dependence of the temperature and precipitation data with elevation and the spatial variability in hydrogeomorphological variables with nine sub-basins of uniform parameters. Model parameters are calibrated by fitting stream flow measurements in the Zêzere river. Computed stream flows are highly sensitive to soil thickness, whereas computed groundwater recharge is most sensitive to the interflow and percolation recession coefficients. Interflow is the main component of total runoff, ranging from 41 to 55% of annual precipitation. High interflows are favored by the steep relief of the basin, by the presence of a high permeability soil overlying the fractured low permeability granitic bedrock and by the extensive subhorizontal fracturing at shallow depths. Mean annual groundwater recharge ranges from 11 to 15% of annual precipitation. It has a significant uncertainty due to uncertainties in soil parameters. This methodology proves to be useful to handle the research difficulties regarding a complex mountain basin in a context of data scarcity.  相似文献   

16.
全球范围内干旱区河流正日益受到高强度人类活动的扰动,但较少研究报道这种扰动对河流地貌过程的影响。采用历史文献、水文数据和遥感影像相结合的方式,详细分析了人类活动影响下中国最大内陆河塔里木河(简称塔河)的河流地貌变化过程。结果表明:塔河流域人类活动的规模和强度日趋上升,对河流水沙过程和地貌形态等影响显著。近50年来,塔河干流低流量过程发生频率呈显著上升趋势,而中、高流量过程则呈降低趋势,河道径流和输沙量减少显著。塔河干流上游现为游荡河道,冲淤变化剧烈且总体处于淤积抬升状态, 但河道平均河宽呈减小趋势,可能是因为塔河两岸冲积平原的开垦和河岸加固。塔河中游弯曲河道蜿蜒系数在近几十年呈缓慢上升趋势,但明显低于废弃古河道。  相似文献   

17.
甘肃渭河流域气温、降水和径流变化特征及趋势研究   总被引:4,自引:2,他引:2  
牛最荣  赵文智  刘进琪  陈学林 《水文》2012,32(2):78-83,87
根据流域内气象站、雨量站、水文站的气温、降水、径流系列监测资料,采用周期波法、延时分布频率、径流溯源理论分析了渭河流域气温变化及分布特征,降水量变化及分布特征,径流变化特征和未来变化趋势。揭示了渭河流域气温、降水和径流变化之间的关系。结果表明:(1)气温波动变化存在着9~10 a的周期性变化规律,气温的流域分布由河源向干流递升且与地理高程密切相关。(2)流域平均降水呈现出弱减少的趋势性变化过程。降水的流域分布特征主要体现为均匀性、地带性两个方面。(3)流域多年径流变化存在显著的逐年减小的趋势,径流年际变化趋势要大于降水年际变化趋势。从径流溯源度多年平均变化过程看,1970年以后渭河流域径流空间分布呈现出持续性缩小的趋势,并且下游的缩小速度要大于上游。  相似文献   

18.
鄂尔多斯盆地侏罗系直罗组砂岩发育特征   总被引:9,自引:0,他引:9  
根据岩性旋回结构,在全盆地范围将直罗组划分为上、下两段。分段制图表明,直罗组上、下段地层厚度展布规律与全组厚度展布规律基本一致,均表现为西厚东薄;上段地层较下段厚。下段砂岩层数少、单层厚度大;而上段砂岩以层多、层薄为特点。直罗组砂岩总体成熟度较低,区域制图和碎屑组分等反映周缘存在多个源区。砂岩粒度分布表现为河道和分流河道等沉积特征。直罗组砂岩发育多种反映陆上河流沉积环境的层面和层理构造。综合分析认为,在今残留盆地范围内,直罗组下段以辫状河、曲流河沉积为主,东北部可见三角洲平原沉积。上段以辫状河、曲流河、三角洲和湖泊沉积为主。直罗组下段辫状河道砂岩具有良好的渗透性、连通性和成层性,是砂岩型铀矿和石油的良好储层。
  相似文献   

19.
Biotic forcing on river meandering is a highly debated topic in sedimentology. Vegetation is assumed to hold a vital role on channel stability and sinuosity, for example through bank stabilization and pedogenic production of cohesive clays. However, statistically solid and causal relationships between vegetation density and river sinuosity remain largely untested in natural systems. This study investigates physical and biotic forcings on channel sinuosity in the Bonneville Basin of Utah (USA), an endorheic depression flanked by active fluvial networks (‘washes’) that display diverse vegetation density and channel‐planform style. By means of remote sensing and ground‐data collection, 58 washes are considered, 0·1 to 90 km2 in surface area and drained by trunk channels <45 m wide and <1·2 m deep. Each wash is composed of a catchment basin connected downstream to an aggradational and distributive channel network. Statistically solid regressions highlight the primary roles played by base level and catchment size on fluvial morphogenesis. In contrast, no correlation is found between vegetation density and other parameters such as trunk‐channel width or surface area of the largest meander in a wash. Similarly, no statistical correlation exists between vegetation density and meander size or sinuosity index. Rather, larger and more sinuous meanders are invariably associated with lower vegetation density. These results are corroborated by field evidence showing that sparse vegetation promotes flow disturbance, channel branching and bar braiding instead of stabilizing sediment surfaces. Thus, river meandering is attributed to cohesion offered by mud retention within the endorheic basin, as well as discharge and stream‐power modulation along bifurcating and low‐gradient channel reaches. Hence, this work demonstrates how meandering‐channel patterns may arise from entirely physical forcings in the absence of vegetation.  相似文献   

20.
环境变化改变了河流水文情势,影响了河流的生态系统健康,亟需开展变化环境下河流水文健康演变定量归因方法研究。选取北方半干旱地区老哈河流域为研究区,依据流域内3个水文站、17个雨量站和6个气象站1964—2016年数据,基于可变下渗容量模型还原河流的天然流量序列;采用概率密度法计算河流生态流量,基于生态流量阈值推求河流水文健康等级;基于"观测-模拟"对比分析法,定量分离气候变化和人类活动对河流水文健康情势的影响。结果表明:人类活动是甸子和太平庄子流域自1980年以来河流水文健康情势退化的主要原因,其贡献率分别为86.9%和87.9%;大面积农业灌溉用水引起地表径流下降以及水利工程改变天然水文情势,影响了河流水文健康情势;90年代降水量较为充沛,研究流域受人类活动影响程度较小,河流水文健康等级维持在较高的水平。综合生态流量阈值和"观测-模拟"对比分析方法可定量识别河流水文健康情势演变原因,为适应环境变化的河流健康管理提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号