首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
华南埃迪卡拉纪陡山沱海洋中无机碳同位素组成变化   总被引:3,自引:1,他引:2  
报道了贵州江口桃映深水相剖面陡山沱组碳酸盐岩δ13C值的变化特征,结合其他已报道的数据,分析了华南扬子地区埃迪卡拉纪陡山沱海洋不同沉积环境,包括盆地相、斜坡相、台地相、台地边缘相碳酸盐岩中δ13C变化趋势及绝对值的异同,发现浅水区剖面记录的δ13C漂移次数多于深水区剖面,且不同相区δ13C值也有差异。δ13C值的差异与埃迪卡拉纪陡山沱海洋的阶段性演化密切相关。基于不同相区的δ13C值变化,埃迪卡拉纪陡山沱海洋的演化历史可分为3个时期:1)陡山沱组1段盖帽白云岩沉积期华南扬子地区很可能为一个开阔台地,白云岩中δ13C值可能继承于幔源CO2的碳同位素特征,深水区和浅水区碳酸盐中δ13C值无显著差异;2)陡山沱组2段和陡山沱组3段下部沉积时期盆地深水区中δ13C值显著低于浅水区,且深水区δ13C值与陡山沱组1段时期无显著差异,浅水区的δ13C值则显著升高;3)陡山沱组3段上部和陡山沱组4段沉积时期陡山沱盆地中δ13C值均显著下降,且不同沉积环境中的δ13C值差异度降低。盖帽后埃迪卡拉纪陡山沱海洋阶段性演化主要与不同时期深水区DOC库的逐步氧化有关。  相似文献   

2.
对湖北宜昌埃迪卡拉系牛坪剖面碳酸盐岩进行了高精度的碳、氧同位素分析,微量元素测定。碳同位素演化趋势研究表明,牛坪剖面陡山沱组与灯影组下部存在2 次碳同位素负漂移和3 次显著的碳同位素正漂移。负漂移分别位于陡山沱组底部( EN1) 和陡山沱组中部( EN2) ,δ13C 值分别降低到- 3. 6‰、- 2‰。正漂移分别位于陡山沱组下部( EP1) 、上部( EP2) 以及陡山沱组和灯影组界线处( EP3) ,δ13C 分别上升到6. 7‰、7. 1‰、8. 2‰。牛坪剖面埃迪卡拉系δ13C 的演化趋势可与黄陵背斜周缘埃迪卡拉系碳同位素演化趋势对比,表明至少区域上碳同位素化学地层学在埃迪卡拉系划分和对比中具有重要意义。  相似文献   

3.
Metazoan fossils in the Gaojiashan Biota are famous for being well preserved and may provide new insights into the early evolution and skeletonization of Metazoans. We are studying the isotopic compositions of organic and carbonate carbon from a sequence of sedimentary rocks at the Gaojiashan section, northern Yangtze Platform, Shaanxi Province of China. Organic carbon isotope values display a range between –30.8‰ and –24.7‰ with clear stratigraphic variations. Carbonate carbon isotope data vary between 0.1‰ and +6‰. Positive δ13C values from sediments with Gaojiashan biota reflect temporal variations in carbon turnover, i.e. an increasing in photosynthetic carbon fixation followed by an increasing subsequent fractional organic carbon burial, and that related to bio-radiation such as increasing algae, bacteria, and original creatures productivity in biomass. These secular variations are interpreted to reflect perturbations of the regional carbon cycle, specifically changes in the fractional burial of organic carbon, and discuss the relationship between Gaojiashan biota and paleoenvrionmental variation.  相似文献   

4.
U-Pb dating of detrital zircons from the sandstones of the Mamakan Formation has been made. Geochemical and isotope parameters of the carbonate deposits of the Yanguda Formation in the Vendian-Cambrian cover of the North Muya continental block have been estimated. It has been established that only the Neoproterozoic (630-915 Ma) rocks of the North Muya block were the provenances of terrigenous material. In the least altered carbonate rocks of the Yanguda Formation, the 87Sr/86Sr ratio is within 0.70814-0.70879 and δ13C varies from -0.4 to + 1.9‰. Comparison of the evaluated isotope parameters with those of carbonate rocks of typical Vendian-Cambrian sections shows that the carbonate deposits of the Yanguda Formation accumulated in the Early Cambrian, about 520 Ma. Sedimentation of the Mamakan and Yanguda Formations took place in the local sedimentary basin in the Vendian-Early Cambrian, in the absence of tectonic activity within the North Muya block. Detrital material that formed during the destruction of the rocks of the Siberian Platform basement and cover was not supplied into the basin.  相似文献   

5.
Black shales occur widely in the Lower Cambrian and Neoproterozoic strata on the Yangtze Platform, South China. In this study, Lower Cambrian black shales from Xiuning section and Late Neoproterozoic black shales from Weng’an section were studied and Pb isotopic compositions were analyzed following a stepwise acid-leaching technique. The 206Pb/204Pb ratios in both sections show large variations, from 18.906 to 43.737 in the Weng’an section and from 24.811 to 38.110 in the Xiuning section. In contrast, the ranges for 207Pb/204Pb and 208Pb/204Pb values in both sections are relatively smaller from 15.649 to 17.126 and 37.744-38.199 in the Weng’an section, and from 16.034 to 16.783 and 38.602-39.391 in the Xiuning section, respectively. These data yielded two Pb isotope isochron ages of 536±39 and 572±36 Ma, respectively. These ages well accord with other published data and we suggest that they represent the depositional ages for the Lower Cambrian Hetang Formation and the upper Neoproterozoic Doushantuo Formation in South China.  相似文献   

6.
Carbon and oxygen isotope compositions of Lower-Middle Ordovician carbonate rocks in the northwestern Russian Platform (eastern Ladoga Klint, Lynna River, and Babino quarry sections) are considered. In the studied section interval, average δ13C and δ18O values are 0 ± 0.5 and ?5 ± 0.5‰ (V-PDB), respectively. Two closely-spaced negative carbon isotope excursions with the amplitude of 2‰ are established near the Lower-Middle Ordovician boundary (between the Floian and Dapingian stages). The lower part of the Darriwilian Stage is marked by the gradual decrease in δ13C values to 1‰. Excursions of δ13C do not correlate with δ18O variations and can be considered as primary. The carbon isotope event defined at the Lower-Middle Ordovician boundary is traceable at the interregional level and represents a promising stratigraphic reference level. It may likely be explained by decrease in the relative rate of organic matter burial due to sea level fall and expansion of well-aerated shallow-water basins with a low primary production of phytoplankton.  相似文献   

7.
《Gondwana Research》2013,23(3-4):1091-1101
A pronounced negative δ13C shift that can be potentially correlated with the Shuram excursion has been reported from middle Ediacaran strata in the Yangtze Gorges area of South China. Whether it represents a perturbation to the ocean carbon cycle or a record of post-depositional alteration is still open to debate. Resolving this controversy will help clarify if δ13C variations can be used for chemostratigraphic correlation of Ediacaran successions. To further understand the regional pattern of Ediacaran carbon isotopic excursions in the Yangtze platform, we carried out a detailed δ13C analysis of the Lianghong section in the western part of the Yangtze platform. The Ediacaran System at Lianghong is overlain by the Maidiping Formation yielding early Cambrian small shelly fossils and underlain by the Cryogenian Lieguliu Formation diamictite and tuffaceous siltstones. It comprises the Guanyinya and Hongchunping formations, which have been traditionally correlated with the Doushantuo and Dengying formations, respectively, in the Yangtze Gorges area. Two negative δ13C excursions occur in the Lianghong section. The lower one at the uppermost Guanyinya Formation, with a nadir at − 8.6‰, may be correlated with the pronounced negative δ13C shift (EN3) in the uppermost Doushantuo Formation in the Yangtze Gorges area and possibly with the well known Shuram event in Oman. The upper negative δ13C excursion occurs in the upper Hongchunping Formation and may be correlated with negative excursions (EN4) near the Ediacaran/Cambrian boundary. Other negative δ13C excursions (e.g., EN1 and EN2) are not expressed in the Lianghong section because the lower Guanyinya Formation is dominated by siliciclastic rocks. Combined with previously published Ediacaran δ13C profiles, our results indicate that the EN3 excursion (likely a Shuram equivalent) may occur widely in South China and can be a useful chemostratigraphic feature for regional and global stratigraphic correlation.  相似文献   

8.
Large carbon cycle perturbations associated with the Middle Permian (Capitanian) mass extinction have been widely reported, but their causes and timing are still in dispute. Low resolution carbon isotope records prior to this event also limit the construction of a Middle Permian chemostratigraphic framework and global or local stratigraphic correlation, and hence limit our understanding of carbon cycle and environmental changes. To investigate these issues, we analyzed the 13Corg values from the Middle Permian chert-mudstone sequence (Gufeng Formation) in the Lower Yangtze deep-water basin (South China) and compared them with published records to build a chemostratigraphic scheme and discuss the underlying environmental events. The records show increased δ13Corg values from late Kungurian to early Guadalupian, followed by a decrease to the late Wordian/early Capitanian. The early-mid Capitanian was characterized by elevated δ13Corg values suggesting the presence of the “Kamura Event”: an interval of heavy positive values seen in the δ13Ccarb record. We propose that these heavy Capitanian δ13C values may be a response to a marked decline in chemical weathering rates on Pangea and associated reduction in carbonate burial, which we show using a biogeochemical model. The subsequent negative δ13C excursion seen in some carbonate records, especially in shallower-water sections (and in a muted expression in organic carbon) coincide with the Capitanian mass extinction may be caused by the input of isotopically-light carbon sourced from the terrestrial decomposition of organic matter.  相似文献   

9.
浙江长兴二叠系和三叠系界限地层的碳同位素   总被引:15,自引:0,他引:15       下载免费PDF全文
研究海相碳酸盐岩的碳和氧同位素已有三十多年,积累了数千个数据,其目的在于研究古海洋碳和氧同位素的演变。在此期间,一部分研究者认为,海相碳酸盐岩的δ13C值在0±2范围内变化,未表现出与地质时代相关的变化趋势(Clayton和Degens,1959;Degens和Epstein,1962;Keith和Weber,1964;Galimov,1965;Becker和Clayton,1972;Schidlowski等,1975)。但是,另一些学者,如Jeffery等(1955),Baertschi(1975),Compston(1960),Weber(1967),Garrels和Parry(1974)却认为,海相碳酸盐岩的δ13C值随地质时代而有规律地变化。  相似文献   

10.
Carbonate δ13C values provide a useful monitor of changes in the global carbon cycle because they can record the burial ratio of organic to carbonate carbon. The most pronounced isotope excursions in the geologic record occur during the Neoproterozoic and have assumed a central role in the interpretation of biogeochemical events preceding the Ediacaran and Cambrian radiations. The most profound negative carbon isotope excursion is best recorded in the Ediacaran-aged Shuram Formation of Oman and has potential equivalents worldwide including the Wonoka Formation of South Australia and other sections in China, India, Siberia, Canada, Scandinavia and Brazil. All these excursions are less well understood than those in the Phanerozoic because of their unusual magnitude, long duration (> 1 Ma) and the difficulty in correlating Neoproterozoic basins to confirm independently that they do indeed record global change in the mixed ocean reservoir. Alternatively, these δ13C anomalies could reflect diachronous diagenetic processes. Currently none of these excursion are firmly time constrained and critical to their interpretation is a coherent reproducibility and synchroneity at the global ocean scale. Here we use available strontium isotope record as an independent chronometer to test the timing and synchroneity of the Shuram δ13C and its potential equivalents. The use of the 86Sr/87Sr ratio allows the reconstruction of a coherent, global δ13C record calibrated independently against time. The calibrated δ13C curve indicates that the Shuram negative anomaly spans several tens of millions of years and reaches values below −10‰. This carbon isotopic anomaly therefore represents a meaningful oceanographic event that fundamentally challenges our understanding of the carbon cycle as defined in the Phanerozoic.  相似文献   

11.
新元古代陡山沱期是扬子地台重要的成磷期,鄂西白果园磷块岩就形成于当时海侵不断扩大的过程中。白果园陡山沱组位于黄陵背斜西北部,磷矿赋存于陡山沱组下部。对白果园剖面进行层序地层学研究,将南沱冰期后沉积的陡山沱组和灯影组划为一个二级层序。含有磷块岩的陡山沱组,代表了南沱冰期后强烈的海侵活动的特点,将其划分为六个三级层序,磷块岩形成于第一个三级层序内。在层序1的海侵体系域上部与高位体系域下部所反映的潮下带,砂屑磷块岩品位很高。冰期时的物理风化和陡山沱期化学风化作用将地表含磷物输入海洋,海侵引发的上升洋流携带富磷海水涌入浅水区,为磷块岩在层序1内的形成提供了物源与动力条件。初次海侵对磷矿形成十分有利,高品位的含磷层对应于最大海侵阶段。采用地球化学方法对含磷岩系进一步研究后表明,生物有机质对白果园磷块岩的形成有重要作用。大冰期过后陡山沱期新的古海洋生态系统开始构建,使生物生产率迅速恢复,为生物有机质的成矿作用提供了机遇。其有机碳含量介于盆地型磷块岩与台地型磷块岩之间,显示了泥页岩—碳酸盐岩型含磷岩系Corg含量的“过渡性”特点。由于其含磷岩系形成的环境为半局限性滞留洼地,白果园磷块岩是弱还原—弱氧化环境的沉积产物。与邻区贵州瓮安的台地型磷块岩进行对比,台地型磷块岩由于更为氧化的环境而具有低Corg和高P2O5特点。通过与早寒武世云南昆阳磷矿的对比,发现能量较高并具有丰富藻类的潮下带为磷块岩形成的优势区带,但白果园不具备昆阳磷矿的藻滩成磷环境。所以,白果园磷块岩的形成是海侵作用和生物有机质的参与等因素共同作用的结果。  相似文献   

12.
湖北宜昌樟村坪埃迪卡拉系陡山沱组C同位素变化及成因   总被引:1,自引:0,他引:1  
周鹏  张保民  陈孝红 《地质通报》2017,36(5):780-791
以宜昌樟村坪地区万家沟和白鹭垭2个陡山沱组剖面为研究对象,开展了黄陵背斜北缘浅水沉积区埃迪卡拉系陡山沱组C稳定同位素研究。建立了黄陵背斜北缘陡山沱组C稳定同位素曲线,并识别出4次负漂移(ZN1~ZN4),3次正漂移事件(ZP1~ZP3)。其中3次负漂移可以全球对比,1次负漂移(ZN3)在峡东地区可以显著识别。确认了ZN4与DOUNCE事件的对应关系,且该区缺失峡东典型剖面陡山沱组四段。认为ZN1是全球性甲烷渗漏事件的反映;ZN2是区域性海平面下降的反映,与全球WANCE事件有很好的对应关系,而对应年代值要远比Gaskeris冰期时间早;ZN3应当是区域性洋流上升带来贫13C沉积物引起的;ZN4则可以非常好地用埃迪卡拉纪海洋有机碳库氧化来解释。  相似文献   

13.
In order to examine the causal relationships between the carbon cycle in a shallow euphotic zone and the environmental changes in a relatively deep disphotic zone at the end-Guadalupian (Middle Permian), isotopic compositions of carbonate carbon (δ13Ccarb) of the Guadalupian–Lopingian (Upper Permian) rocks were analyzed in the Chaotian section in northern Sichuan, South China. By analyzing exceptionally fresh drill core samples, a continuous chemostratigraphic record was newly obtained. The ca. 65 m-thick analyzed carbonate rocks at Chaotian comprise three stratigraphic units, i.e., the Limestone Unit of the Guadalupian Maokou Formation, the Mudstone Unit of the Maokou Formation, and the lower part of the Wuchiapingian (Lower Lopingian) Wujiaping Formation, in ascending order. The Limestone Unit of the Maokou Formation is characterized by almost constant δ13Ccarb values of ca. +4‰ followed by an abrupt drop for 7‰ to −3‰ in the topmost part of the unit. In the Mudstone Unit of the Maokou Formation, the δ13Ccarb values are rather constant around +2‰, although distinct three isotopic negative excursions for 3‰ from ca. +2 to −1‰ occurred in the upper part of the unit. In the lower part of the Wujiaping Formation, the δ13Ccarb values monotonously increase for 5‰ from ca. 0 to +5‰. The present data newly demonstrated four isotopic negative excursions in the topmost part of the Maokou Formation in the Capitanian (Late Guadalupian) at Chaotian. It is noteworthy that these negative excursions are in accordance with the emergence of an oxygen-depleted condition on the relatively deep disphotic slope/basin on the basis of litho- and bio-facies characteristics. They suggest multiple upwelling of oxygen-depleted waters with dissolved inorganic carbon of relatively low carbon isotope values along the continental margin, from the deeper disphotic slope/basin to the shallower euphotic shelf, slightly before the end-Guadalupian extinction. Although the negative excursions at Chaotian are apparently correlated with the previously proposed large negative excursion in the middle Capitanian in South China, the age difference according to the biostratigraphic constraints clearly exclude this interpretation. The isotopic negative excursions at Chaotian are unique and no similar isotopic signal in the same period has been reported elsewhere. The multiple upwelling of oxygen-depleted waters onto the euphotic shelf may have represented local phenomena that occurred solely around northwestern South China.  相似文献   

14.
《Gondwana Research》2001,4(3):387-394
The rocks of Marwar Supergroup in the trans-Aravalli sector in western India are presumed to span the time interval between Neoproterozoic and early Cambrian. This, predominantly unfossiliferous, marine sedimentary sequence is characterized by a lower arenaceous facies (Jodhpur Group), middle carbonate facies (Bilara Group) and upper argillaceous— arenaceous facies (Nagaur Group) rocks. The sedimentation has been essentially in a shallow basin, described either as the fore-land slope of the rising Aravalli mountains or a sag-basin which developed and evolved due to subsidence of the updomed crust during Neoproterozoic Malani magmatism that failed to open rifts. The carbon isotopic profile for the Bilara Group carbonate rocks in the lower part shows marked oscillations and broadly negative δ13C character with negative anomalies as low as <−4.3‰PDB, observed near the base of Dhanapa Formation (lower unit) and <−6.5‰PDB in the overlying Gotan Formation (middle unit). The upper part of the profile shows a gradual positive shift. The carbon isotopic signatures of the Bilara Group rocks can be correlated with the end-Neoproterozoic — early Cambrian (Vendian — Tommotian) carbon isotopic evolution curve. Extremely low δ13C values indicate the glaciation related cold climatic postulates of the end-Neoproterozoic, followed by the warmer climatic conditions as indicated by the positive shift. The carbon isotopic data for Gotan Formation carbonates, at variance with the globally observed δ13C trends for early Tertiary, do not support the recently proposed Tertiary age for the Bilara Group.  相似文献   

15.
The Patom Complex is characterized by a unique association of carbonate rocks with ultralow (≤8‰) and ultrahigh (>6‰) δ13C values. The thickness, stable isotopic composition along the strike, and lithological and geochemical parameters suggest that these rocks could not form as a result of short-term local events or epigenetic processes. Ultralow δ13C values (less than ?8‰) in carbonate rocks of the Zhuya Group, which substantially exceed all the known negative C isotope anomalies in thickness (up to 1000 m) and amplitude (δ13C = ?10 ± 2‰), point to sedimentation under conditions of extreme “contamination” of water column by oxidized isotopically light organic (hereafter, light) carbon. The decisive role in this contamination belonged to melting and oxidation of huge volumes of methane hydrates accumulated in sediments during the powerful and prolonged Early Vendian glacial epoch. The accumulation of δ13C-depleted carbonates was preceded by the deposition of carbonates with anomalously high δ13C values. These carbonates formed at high rates of the burial of organic matter and methane in sediments during periods when the sedimentation basin consumed carbon dioxide from the atmosphere and organic carbon was conserved in sediments.  相似文献   

16.

This study uses carbon isotope chemostratigraphy to propose an age for the Success Creek Group and Crimson Creek Formation in the absence of any direct radiometric dates, palaeomagnetic or reliable palaeontological data. The δ13C values were determined for the least‐altered dolomite samples. Suitable samples were selected on the basis of grainsize, cathodoluminescence petrography, most enriched δ18O values (> 2%o) low Mn/Sr ratios and low Fe and Mn concentrations. The average least‐altered, most 13C‐enriched dolomicrite samples in the youngest (No. 1) dolomite horizon are + 4.6%o. This is typical of Neoproterozoic (but not Cambrian) carbonates. The δ13C values of all dolomite samples in the succession are significantly positive (up to + 7.5%o) and the excursion characteristic of the Proterozoic/Cambrian boundary has not been observed. The lack of negative δ13C values in all dolomite samples studied also suggests an absence of correlatives of Sturtian and Varanger tillites in the dolomite successions. The δ13C values in all three dolomite horizons suggest a Neoproterozoic age between about 820 to 570 Ma (Cryogenian to Neoproterozoic III) on the current global compilation carbon isotope curves. This age for the Success Creek Group and Crimson Creek Formation, inferred from carbon isotope chemostratigraphy, can be substantiated by other evidence. The age of the Renison dolomites is constrained by K‐Ar dates of 708 ± 6 Ma from detrital muscovite in the underlying Oonah Formation and 588 ± 8 and 600 ± 8 Ma from doleritic rock in a lithostratigraphic equivalent of the Crimson Creek Formation from the Smithton Basin. Furthermore, acritarchs and the stromatolite Baicalia cf. B. burra also suggest a Neoproterozoic rather than Cambrian age.  相似文献   

17.
华南埃迪卡拉系陡山沱组上部的δ13C巨大负异常事件(DOUNCE)是当前埃迪卡拉系研究最受关注的焦点之一。在对湖北宜昌茅坪泗溪剖面埃迪卡拉系开展高精度的岩石地层和碳氧同位素研究的基础上,通过与黄陵背斜周缘其他剖面的对比,表明峡区陡山沱晚期DOUNCE事件的δ13C值变化由下降—负漂移—短期正漂移—回升4个阶段构成,但DOUNCE事件在不同剖面上的表现存在明显差异。详细的沉积岩相分析和地层对比表明,各剖面δ13C演化差异是由岩相变化导致的岩石地层发育差异引起的。泗溪剖面DOUNCE事件主体部分缺失与该剖面位于台内盆地斜坡环境,发育多层滑塌构造造成的地层缺失有关。研究结果表明在缺乏生物地层控制的埃迪卡拉系,δ13C同位素地层是揭示沉积相变化造成的岩石地层差异和地层对比的重要手段。  相似文献   

18.
The 87Sr/86Sr ratio in gypsum and limestones of the Ordovician section of the Moyero River decreases from the bottom upward from 0.7091?0.7095 in the Irbukli Formation (Nyaian Regional Stage, ~Lower Ordovician Tremadocian Stage) to 0.7080 in the upper part of the Dzherom Formation (Dolborian Regional Stage, ~Upper Ordovician Katian Stage), which is well consistent with biostratigraphic subdivision of the section and existing concept concerning the strontium isotope evolution of the World Ocean. The most characteristic feature of the carbon isotope curve is decrease of δ13С values in carbonates from weakly positive values (0.5…1.1‰) in the Irbukli Formation (Nyaian Regional Stage) to sharply negative values (–5.4...–5.8‰) in the middle part of the Kochakan Formation (top of the Kimaian Regional Stage, ~end of the Dapingian–base of the Darriwilian Stage). Increase of δ18О from 20?22‰ to 26?28‰, the negative correlation of δ13С and δ18О, and decrease of δ34S in gypsum from 30?32‰ to 22?24‰ in this interval indicate that the 13С depletion of carbonates was not related to the sulfate reduction and oxidation of organic matter during diagenesis and that the negative δ13С excursion was of primary nature. The presence of negative δ13С anomalies at this stratigraphic level in Ordovician sections of the South and North America (Buggish et al., 2003; Edwards and Saltzman, 2014; McLaughlin et al., 2016) indicates the global or subglobal distribution of this event, which was possibly related to the emergence of the oldest ground vegetation. Against the general decrease of δ13С, the lower part of the section reveals three low-amplitude (1?2‰) positive excursions, the position of which in general confirms the existing correlation scheme of the Moyero River section with the international scale. The upper part of the section is characterized by the alternation of low-δ13С intervals (from–2 to–3‰) and brief positive excursions with amplitude of 0.5?1.3‰. The positive δ13С excursion terminating the Ordovician section of the Moyero River correlates with the δ13С excursion in the middle Katian Stage, while the δ13С excursion in the lower part of the Baksian Regional Stage correlates with the excursion marking the Katian–Sandbian boundary.  相似文献   

19.
The authors have detailedly and systematically studied the carbon isotopic composition of Early Proterozoic carbonate rocks. Samples which are all dolomicrite were taken from the Jianancun, Daguandong and Huaiyincun Formations of the Hutuo Group in Wutai County Shanxi Province, North China. A total of 209 samples were analysed for their carbon isotope compositions, and the mean sampling interval was 6.9 m. Carbon isotope analysis clearly shows δ13C shifts at the boundary between the Jian'ancun Formation and Daguandong Formation and near the boundary between the Daguandong Formation and Huaiyincun Formation. Like carbon isotope shifts at the Cretaceous-Tertiary, Permian-Triassic and Precambrian-Cambrian boundaries, the discovery of δ13C shifts in the Early Proterozoic has important significance in further studies on Early Proterozoic biotic evolution, regional and global stratigraphic correlation, and carbon geochemical cycles.  相似文献   

20.
《Gondwana Research》2014,25(3):1057-1069
The appearance of multicellular animals and subsequent radiation during the Ediacaran/Cambrian transition may have significantly changed the oceanic ecosystem. Nitrogen cycling is essential for primary productivity and thus its connection to animal evolution is important for understanding the co-evolution of the Earth's environment and life. Here, we first report on coupled organic carbon and nitrogen isotope chemostratigraphy from the entire Ediacaran to Early Cambrian period by using drill core samples from the Yangtze Platform, South China. The results show that δ15NTN values were high (~ + 6‰) until middle Ediacaran, gradually dropping down to − 1‰ at the earliest Cambrian, then rising back to + 4‰ in the end of the Early Cambrian. Organic carbon and nitrogen contents widely varied with a relatively constant C/N ratio in each stratigraphic unit, and do not apparently control the carbon and nitrogen isotopic trends. These observations suggest that the δ15NTN and C/N trends mainly reflect secular changes in nitrogen cycling in the Yangtze Platform. Onset of the observed negative N isotope excursion coincided with a global carbon isotope excursion event (Shuram excursion). Before the Shuram event, the high δ15N probably reflects denitrification in a nitrate-limited oceanic condition. Also, degradation of dissolved and particulate organic matter could be an additional mechanism for the 15N-enrichment, and may have been significant when the ocean was rich in organic matter. At the time of the Shuram event, both δ13Ccarb and δ15NTN values were dropped probably due to massive re-mineralization of organic matter. This scenario is supported by an anomalously low C/N ratio, implying that enhanced respiration resulted in selective loss of carbon as CO2 with recycled organic nitrogen. After the Shuram event, the δ15N value continued to decrease despite that δ13Ccarb rose back to + 4‰. The continued δ15N drop appears to have coincided with a decreasing phosphorus content in carbonate. This suggests that ocean oxygenation may have generated a more nitrate-rich condition with respect to phosphorus as a limiting nutrient. Similar to the Shuram event, another negative δ13Ccarb event in the Canglanpuan stage of the Early Cambrian is also characterized by carbon isotopic decoupling as well as the low C/N ratio. The results strongly support that the two stages of the decoupled negative δ13Ccarb excursions reflect a disappearance of a large organic carbon pool in the ocean. The two events appear to relate with the appearance of new metazoan taxa with novel feeding strategies, suggesting a link between ocean oxygenation, nutrient cycling and the appearance and adaptation of metazoans. The nitrogen isotope geochemistry is very useful to understand the link between the environmental, ecological and biological evolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号