首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
煤层气化学组分、甲烷碳氢同位素特征对煤层气成因、分布规律和煤层气资源评价具有重要意义。为了查明河东煤田北部兴县地区山西组、太原组煤层甲烷及二氧化碳成因,采集研究区煤层气井解吸气样,通过组分分析、CH4碳氢同位素和CO2碳同位素测试,根据煤层气成因图版,分析了煤层气稳定同位素的地质影响因素,揭示了研究区煤层气成因。结果表明,区内主力煤层的甲烷碳同位素存在明显差异:8煤甲烷δ13C1值介于-55.1‰~-44.2‰,平均为-49.2‰;13煤δ13C1值介于-65.7‰~-55.7‰,平均为-59.8‰。同一煤层内甲烷碳同位素呈现出随煤层埋深增加而变重、随水动力条件增强变轻的特点;甲烷碳同位素偏轻,重烃组分偏少,表明受到一定因素或次生作用的影响。8煤以热成因气为主,13煤以次生生物成因气为主。研究区8煤δ13C (CO2)介于-17.3‰~-4.8‰,13煤δ13C (CO2)介于-26.3‰~-6.9‰,二氧化碳为煤热演化初期或最近一次煤层抬升再沉降后煤中有机质热裂解产生。研究成果为明确该区煤层气勘探开发方向提供了理论依据。   相似文献   

2.
黄陵矿区属于煤油气共生矿区,区内多个工作面发生底板气异常涌出。为探明底板异常涌出气体的成因类型,采集煤层底板气样44个、2号煤层气样12个,进行甲烷碳同位素(δ13C1)、乙烷碳同位素(δ13C2)及甲烷氢同位素(δDCH4)等地球化学参数测试。测试分析结果表明,煤层底板异常涌出气不是来源于2号煤层,其甲烷碳同位素(δ13C1)测值为-52.20‰~-42.80‰,乙烷碳同位素(δ13C2)值为-37.20‰~-29.01‰,成因类型属油型气。通过对区域烃源岩分布及地层裂隙系统的分析,认为黄陵矿区底板异常涌出气可能来源于三叠系延长组烃源岩。   相似文献   

3.
对淮北煤田祁东煤矿6个煤层的24个煤样和12个气样的稳定有机碳同位素分析,分别研究了煤和瓦斯中碳同位素的分布特征和变化趋势,为不同煤层及瓦斯源分析提供理论依据。研究表明:祁东煤矿煤的δ13C为-25.11‰~-22.76‰,6-1煤层至9煤层碳同位素均值呈波动变化,可能受当时成煤时期沉积环境的影响;瓦斯的δ13C1为-63.65‰~-52.51‰,表现出次生生物成因气的变化特征,二氧化碳碳同位素特征(-22.61‰~-17.96‰)表明其均是煤热解而来。   相似文献   

4.
固市凹陷非常规水溶甲烷气成因及来源   总被引:1,自引:0,他引:1  
针对渭河盆地固市凹陷水溶甲烷气的成因类型进行分析研究。对地层水溶甲烷气碳同位素δ13C1及重烃的含量研究发现,不同层位的水溶甲烷气成因类型不同。新近系张家坡组水溶甲烷气主要为有机成因的生物气,来源于本层含碳质较高的灰黑色泥灰岩生物分解,为自生自储式;下部蓝田—灞河组水溶甲烷气以未成熟的煤型热解气(煤型腐殖型)为主,来源于下部地层。对CO2碳同位素的分布范围和含量进行分析得出,δ13CCO2 < -10‰,为典型的壳源型有机成因,证明蓝田—灞河组水溶甲烷气和CO2来源于下部地层的混合型气,结合乙烷碳同位素分析,得出下部地层可能存在有机成因的煤型热解气层系。   相似文献   

5.
中国南方百色盆地浅层生物气组成与成因   总被引:1,自引:1,他引:1  
根据30余个气样分析资料,结合地质、地球化学背景,对百色第三系残留型盆地浅层生物气的组成和分布特征进行了深入研究,并探讨了其成因和形成机制。这些浅层气主要以烃类气体为主,一般占90%以上。甲烷和C2+烷烃含量有较大变化范围,分别主要在50%~100%和0~50%之间,取决于热成因气混入生物气的比例。所研究浅层气的一个重要特征是其碳同位素很轻,甲烷的δ13C值主要变化在-55‰~-75‰范围。按照分子和碳同位素组成及轻烃参数,该盆地浅层气可划分为三种成因类型:纯生物气、生物气/热成因气混合气和原油菌解气。它们在时空上呈规律性分布,与邻…  相似文献   

6.
鲍园  韦重韬  王超勇 《地球科学》2013,38(5):1037-1046
通过数理统计前人公开发表的国内外21个盆地或地区的324组煤型气地化数据, 分析不同成因类型煤型气地层分布和稳定碳、氢同位素组成及空间分布特征, 提出多个煤型气成因类型判识图版, 并以实例论证这些图版的可行性.研究结果表明: 与煤层相关的生物成因气不同于常规生物气, 最显著区别在于前者δ13C(CH4)上限值低, 即生物成因气δ13C(CH4)<-60‰, 热成因气δ13C(CH4)>-40‰, 混合成因气δ13C(CH4)介于二者之间.随着有机质演化程度增强, 从生物成因气至热成因气, δ13C(CH4)、δ13C(CO2-CH4)、δ13C(C2H6-CH4)及CH4/(C2H6+C3H8)具有变重趋势且相关性明显, δ13C(CH4)与δ13C(CO2-CH4)、δ13C(CH4)与δ13C(C2H6-CH4)及δ13C(CH4)与CH4/(C2H6+C3H8)是划分煤型气成因类型最可靠的图版.   相似文献   

7.
本文根据30余个气样分析资料,结合地质、地球化学背景,对百色第三系残留型盆地浅层生物气的组成和分布特征进行了深入研究,并探讨了其成因和形成机制。这些浅层气主要以烃类气体为主,一般占90%以上。甲烷和烷烃含量有较大变化范围,分别主要在50%~100%和0~50%之间,取决于热成因气混入生物气的比例。所研究浅层气的一个重要特征是其碳同位素很轻,甲烷的δ13C值主要变化在55‰~-75‰范围。按照分子和碳同位素组成及轻烃参数,该盆地浅层气可划分为3种成因类型:纯生物气、生物气-热成因气混合气和原油菌解气。它们在时空上呈规律性分布,与邻…  相似文献   

8.
通过对淮南煤田张集煤矿9个煤层的33个煤样稳定有机碳同位素的分析,研究了碳同位素值(δ13C)在煤层中的分布特征和变化趋势.研究表明:张集煤矿煤的δ13C值范围为-23.44‰-25.37‰,平均-24.18‰,不同煤层的δ13C值范围不同,为煤层识别和对比提供了新的依据;自下而上由4-1煤至11-2煤层碳同位素均值呈波动变化,在6煤和9-1煤处分别达到极小值和极大值,这种差异反应了不同煤层的成煤植物生长时期古环境的变化,特别是大气中CO2和温度的变化,与沉积环境也存在着相关性.  相似文献   

9.
王丹 《地下水》2015,(1):200-202
地幔和地核中大量的碳和氢以及地幔深处的甲烷、二氧化碳等提供了无机成因气体的物质基础,近年来地球化学方法的应用给有机和无机成因天然气提供了可靠的判别依据,主要有⑴无机成因甲烷的δ1 3C1≥-30.0‰⑵无机成因烷烃气体具有负碳同位素系列,即δ1 3C1δ1 3C2δ1 3C3δ1 3C4⑶R/Ra0.5,δ1 3C1-δ1 3C20为无机成因烷烃气⑷CH4/3He≤106是无机成因烷烃气(甲烷)。这些判别指标的提出有效地指导了无机成因天然气的勘探实践。目前在我国东部已发现了35个无机成因的二氧化碳气藏,并首次发现无机成因烷烃气藏—昌德气藏,资源潜力巨大,因此应积极开展无机成因气的勘探和开发,使这一产量巨大的油气后备领域早日得到利用。  相似文献   

10.
本文据30余个气样分析资料,结合地质、地球化学背景,对百色古近系一新近系残留型盆地浅层生物气组成和分布特征进行深入研究,并探讨其成因和形成机制。这些浅层气主要以烃类气体为主,一般占90%以上。甲烷和C2+烷烃含量有较大变化,分别在50%~100%和0~50%,取决于热成因气混入生物气的比例。所研究浅层气的一个重要特征是其碳同位素很轻,甲烷的δ^13C值主要变化在-55‰~-75‰范围。  相似文献   

11.
松辽盆地庆深气田异常氢同位素组成成因研究   总被引:2,自引:0,他引:2  
对松辽盆地徐家围子断陷庆深气田天然气组分、碳氢同位素和稀有气体同位素的分析表明,天然气以烷烃气为主,烷烃气碳同位素组成随着碳数增加呈变轻趋势,且δ13C1&gt;-30‰, R/Ra一般大于1.0,δ13CCO2值介于-16.5‰~-5.1‰之间;氢同位素组成δD1=-205‰~-197‰,平均值为-203‰,δD2=-247‰~-160‰,平均值为-195‰,δD3=-237‰~-126‰,平均值为-163‰,且存在氢同位素组成倒转现象,即δD1&gt;δD2&lt;δD3。根据对庆深气田天然气不同地球化学特征分析,认为该气田烷烃气中重烃主要为有机成因,而 CH4有相当无机成因混入。庆深气田烷烃气氢同位素组成具有 CH4变化小,而重烃(δD2,δD3)变化大的特点。根据与朝阳沟地区天然气烷烃气氢同位素组成对比分析,认为 CH4主要表现为无机成因,而重烃气(δD2,δD3)主要为有机成因,且无机成因CH4氢同位素组成重于有机成因CH4。  相似文献   

12.
张建博  陶明信 《沉积学报》2000,18(4):611-614
根据沁水煤层气甲烷碳同位素的组成与分布特征,从煤层甲烷碳同位素在煤层气解吸-扩散-运移中的分馏效应,结合水文地质条件和构造条件,讨论了煤层甲烷碳同位素在煤层气勘探中的地质意义,认为沁水煤层气δ13C1值不仅总体上较高,而且随埋深增大而增高,说明沁水煤层气存在因煤层抬升而卸压所导致的煤层气解吸-扩散-运移效应,从而形成了该区甲烷碳同位素在平面上的分带现象。  相似文献   

13.
祁连山冻土区天然气水合物分解气碳氢同位素组成特征   总被引:4,自引:0,他引:4  
开展祁连山冻土区天然气水合物气体同位素研究,是解决其气体成因、来源等科学问题的一个重要手段。本研究采集祁连山南麓多年冻土区水合物科学钻探DK2和DK3孔共8个含水合物的岩芯样品,采用真空顶空法收集样品中水合物的分解气,分别用气相色谱(GC)、气相色谱同位素比值质谱(GC-IRMS)测定其气体成分和同位素组成,测试结果表明:祁连山冻土区天然气水合物样品的气体碳氢同位素变化较大,甲烷、乙烷和丙烷的碳同位素(δ13C)变化范围分别为-52.6‰~-48.1‰、-38.6‰~-30.7‰和-34.7‰~-21.2‰,而二氧化碳的碳同位素(δ13C)最低为-27.9‰,最高为16.7‰;甲烷、乙烷和丙烷的氢同位素(δD)变化范围分别为-285‰~-227‰、-276‰~-236‰和-247‰~-198‰。通过对这些碳氢同位素进行综合研究,包括气体分子组成与同位素的关系分析、甲烷的碳氢同位素之间的关系判断等,结果表明研究区天然气水合物的气体主要来源于热解气,而且是在淡水环境中形成的有机成因气。  相似文献   

14.
彬长矿区大佛寺井田为典型的黄陇侏罗纪低阶煤煤层气田。井田内煤层气井较多,但有关煤层气成因机制方面的研究较少。厘清井田内煤层气地球化学特征及成因机制,对深化煤层气的形成机理认识和科学评价煤层气资源量具有重要指导意义,可为煤层气高、低产井产能差异化分析提供重要依据。采集研究区内6口煤层气井井口排采气样品,22块4号煤层煤样及煤层水和地表水样各1件,开展显微煤岩组分、气体化学组分、碳同位素和水样水质检测,并结合部分研究区相关的文献数据,分析大佛寺井田煤层CH4碳同位素特征、成因类型及偏轻机理。结果表明:大佛寺井田主采的4号煤层显微煤岩组分中,有机组分含量明显趋高,平均为93.2%,其中,惰质组最具优势,平均68.2%;镜质组次之,平均22.8%,镜质体反射率Rmax平均0.65%。煤层气组分以CH4为主,CH4体积分数为73.805%~98.006%,平均83.753%;N2体积分数为1.259%~25.735%;平均15.220%;CO2体积分数为0.040%~2.380%,平均1.023%;C2及以上重烃含量平均不足0.0054%;C1/C1—n>0.999;CH4和N2含量呈明显负相关性,煤层气组分在成藏后期受空气影响明显。δ13C1为?80.516‰~?62.400‰,平均?73.000‰;δ13CCO2为?41.693‰~?7.065‰,平均?18.660‰。大佛寺井田煤层气为次生生物成因气,其显著标志为δ13C1偏轻和重烃含量极少,呈现典型特干气特征,偏轻机理在于其绝大部分由CO2还原而成,少量由乙酸发酵而成,且在这两种途径的生气过程中,最终均会出现生物甲烷富集轻碳同位素的结果,从而导致δ13C1偏轻。   相似文献   

15.
为了查明保德地区煤层气地球化学特征及成因,采集煤样、煤层气样及水样,开展气体组分分析、煤层气井产出水水质检测和稳定同位素分析。结果表明:煤层气组成中烃类气体以CH4为主,体积分数为88.60%~97.59%;含有少量乙烷,体积分数仅为0.01%~0.14%;干燥系数均大于0.99,属于极干煤层气。非烃类组分中,主要含有CO2和N2,其中,CO2体积分数为1.74%~7.61%,N2体积分数为0.04%~8.18%。煤层气δ13C(CH4)值为–56.8‰~–47.7‰,δ13C(CO2)值为–6.6‰~13.9‰,δD(CH4)值为–252.6‰~–241.6‰。煤层产出水呈弱碱性,属于NaHCO3类型水,与地表水离子构成、矿化度、δD(H2O)和δ18O(H2O)值均相近,有地表水的补给,有利于产CH4菌大量繁殖,生成次生生物气。综合认为,研究区煤层气为热成因气和生物气的混合气,生物成因气主要是通过二氧化碳还原作用形成,受煤层解吸–扩散–运移作用、水溶作用和次生生物作用导致煤层气“变轻”。研究成果为后续煤层气勘探开发提供指导。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号