首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

2.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

3.
《International Geology Review》2012,54(13):1668-1690
The western Junggar Basin is located on the southeastern margin of the West Junggar terrane, Northwest China. Its sedimentary fill, magma petrogenesis, tectonic setting, and formation ages are important for understanding the Carboniferous tectonic evolution and continental growth of the Junggar terrane and the Central Asian Orogenic Belt. This paper documents a set of new zircon secondary ion mass spectrometry U–Pb geochronological and Hf isotopic data and whole-rock elemental and Sr–Nd isotopic analytical results for the Carboniferous strata and associated intrusions obtained from boreholes in the western Junggar Basin. The Carboniferous strata comprise basaltic andesite, andesite, and dacite with minor pyroclastic rocks, intruded by granitic intrusions with zircon secondary ion mass spectrometry U–Pb ages of 327–324 Ma. The volcanic rocks are calc-alkaline and show low high εNd(t) values (5.3–5.6) and initial 87Sr/86Sr (0.703561–0.703931), strong enrichment in LREEs, and some LILEs and depletion in Nb, Ta, and Ti. Furthermore, they also display high (La/Sm)N (1.36–1.63), Zr/Nb, and La/Yb, variable Ba/La and Ba/Th and constant Th/Yb ratios. These geochemical data, together with low Sm/Yb (1.18–1.38) and La/Sm (2.11–2.53) ratios, suggest that these volcanic rocks were derived from a 5–8% partial melting of a mainly spinel Iherzolite-depleted mantle metasomatized by slab-derived fluids and melts of some sediments in an island-arc setting. In contrast, the granitic intrusions represent typical adakite geochemical features of high Sr and low Y and Yb contents, with no significant Eu anomalies, high Mg#, and depleted εNd(t) (5.6–6.4) and εHf(t) (13.7–16.2) isotopic compositions, suggesting their derivation from partial melting of hot subducted oceanic crust. In combination with the previous work, the West Junggar terrane and adjacent western Junggar Basin are interpreted as a Mariana-type arc system driven by northwestward subduction of the Junggar Ocean, possibly with a tectonic transition from normal to ridge subduction commencing ca. at 331–327 Ma.  相似文献   

4.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

5.
The major and trace element, and Sr–Nd isotopic compositions of the Carboniferous Qi’eshan, Wutongwozi, and Yamansu volcanic rocks from the northern and southern parts of the Jueluotage Orogenic Belt in East Tianshan, China, were analysed to understand their genesis and geodynamic implications. The early Carboniferous Qi’eshan basalts are characterized by high Al2O3, with La/Sm (1.38–1.79) and Ba/La (27.06–58.76) values higher than those of typical normal mid-ocean ridge basalt. They are relatively enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), and depleted in high field strength elements. Overall, their initial Nd–Sr isotopic compositions are εNd(t) = (5.6–7.0) and Isr = 0.70397–0.70429, implying the magma originated from a mantle wedge source that was metasomatized by subduction-related fluids. In contrast, the late Carboniferous Wutongwozi basalts have lower Ba/La (4.86–12.82), La/Nb (0.87–2.45), and LILE concentrations. They have the isotopic characteristics of depleted asthenosphere, relatively high and heterogeneous εNd(t) (9.3–9.4), and high Isr (0.70471–0.70533). Thus, the late Carboniferous Wutongwozi basalts may have been derived from the partial melting of mantle sources during asthenospheric upwelling. The early Carboniferous Yamansu acid volcanic rocks are characterized by high Mg# (46–48) and Lu/Y (~0.15), and low K2O/Na2O (0.01–0.20), similar to M-type granites. However, their εNd(t) (5.0–5.5) and Isr (0.70642–0.70768) values are lower than those of depleted mantle, indicating they were contaminated by lower crustal material. The magma source originated from a mantle-derived magma that was contaminated by middle Tianshan massif in a continental margin arc setting. Based on the results and previous field-based studies, we conclude that the Carboniferous volcanics in the Jueluotage Orogenic Belt formed in a complex trench–arc–basin setting in the Kuguertage–Aqikuduke Suture Zone.  相似文献   

6.
东天山石炭纪企鹅山群火山岩岩石成因   总被引:13,自引:1,他引:12  
土屋矿区南北大沟企鹅山群火山岩的岩石地球化学研究表明:东天山企鹅山群火山岩主要为拉斑系列,少量为钙碱系列;岩石类型为玄武岩、玄武安山岩、英安岩和流纹岩。稀土、微量元素和Sr、Nd同位素特点揭示:该火山岩系形成于大陆裂谷环境;其源区主要为软流圈地幔,同时有岩石圈地幔源组分卷入,酸性岩浆是玄武质岩浆结晶分异的产物。  相似文献   

7.
《International Geology Review》2012,54(12):1456-1474
We present new major element, trace element, and Sr–Nd–Pb isotope data for 18 basaltic lavas and six glasses collected in situ from the Eastern Lau Spreading Centre (ELSC) and the Valu Fa Ridge (VFR). All lava samples are aphanitic and contain rare plagioclase and clinopyroxene microlites and microphenocrysts. The rocks are sub-alkaline and range from basalt and basaltic andesite to more differentiated andesite. In terms of trace element compositions, the samples are transitional between typical normal mid-ocean ridge basalt (MORB) and island arc basalt. Samples from the VFR have higher large ion lithophile element/high field strength element ratios (e.g. Ba/Nb) than the ELSC samples. VFR and ELSC Sr–Nd isotopic compositions plot between Indian MORB and Tonga arc lavas, but VFR samples have higher 87Sr/86Sr for a given 143Nd/144Nd ratio than ELSC analogues. The Pb isotopic composition of ELSC lavas is more Indian MORB-like, whereas that of VFR lavas is more Pacific MORB-like. Our new data, combined with literature data for the Central Lau Spreading Centre, indicate that the mantle beneath the ELSC and VFR spreading centres was originally of Pacific type in composition, but was displaced by Indian-type mantle as rifting propagated to the south. The mantle beneath the spreading centres also was variably affected by subduction-induced metasomatism, mainly by fluids released from the altered, subducting oceanic crust; the influence of these components is best seen in VFR lavas. To a first approximation, the effects of underflow on the composition and degree of partial melting of the mantle source of Lau spreading centre lavas inversely correlate with distance of the spreading centres from the Tonga arc. Superimposed on this general process, however, are the effects of the local geographic contrasts in the composition of subduction components. The latter have been transferred mainly by dehydration-generated fluids into the mantle beneath the Tonga supra-subduction zone.  相似文献   

8.
New geochemical and isotopic data for post-collisional Early Eocene and Late Miocene adakitic rocks from the eastern part of the Sakarya Zone, Turkey, indicate that slab and lower crustal melting, respectively, played key roles in the petrogenesis of these rocks. The Early Eocene Yoncal?k dacite (54.4 Ma) exhibits high Sr/Y and La/Yb ratios, low Y and HREE concentrations, moderate Mg# (44–65), and relatively high εNd and low ISr values, similar to adakites formed by slab melting associated with subduction. Geochemical composition of the Yoncal?k dacite cannot be explained by simple crystal fractionation and/or crustal contamination of andesitic parent magma, but is consistent with the participation of different proportions of melts derived from subducted basalt and sediments. Sr/Y correlates horizontally with Rb/Y, and Pb/Nd correlates vertically with Nd isotopic composition, indicating that Sr and Pb budgets are strongly controlled by melt addition from the subducting slab, whereas positive correlations between Th/Nd and Pb/Nd, and Rb/Y and Nb/Y point to some contribution of sediment melt. In addition to low concentrations of heavy rare earth elements (~2–3 times chondrite), a systematic decrease in their concentrations and Nb/Ta ratios with increasing SiO2 contents suggests that slab partial melting occurred in the garnet stability field and that these elements were mobilized by fluid flux. These geochemical and isotopic signatures are best explained by slab breakoff and fusion shortly after the initiation of collision. Although the Late Micone Tavda?? rhyolite (8.75 Ma) has some geochemical features identical to adakites, such as high Sr/Y and La/Yb ratios, low Y and HREE concentrations, other requirements, such as sodic andesite and/or dacite with relatively high MgO and Mg# (>50), relatively high Ni and Cr, low K2O/Na2O (<0.4), high Sr (>400 ppm), for slab-derived adakites are not provided. It is sodic in composition and shows no traces of fractionation from dacitic parent magma. Low Nd and high Sr isotope ratios suggest derivation by partial fusion of calc-alkaline, juvenile crust with high Sr/Y and La/Yb ratios.  相似文献   

9.
The volcanic rock system of the Miaoling Formation contains the main ore-bearing rocks of two volcanogenic massive sulfide (VMS)-type deposits in the Yanbian area of NE China. Investigation of the VRSMF is needed to better understand the formation of these VMS-type deposits and the tectonic evolution of the Yanbian area. To determine the petrogenesis, material sources, and formation age of the VRSMF, and elucidate its late Paleozoic tectonic evolution and metallogenic significance, this paper presents new petrological, geochronological, geochemical, whole-rock Sr–Nd and in situ zircon Hf isotopic data for the VRSMF. The VRSMF is composed of marine carbonate, intermediate–felsic volcanic rocks (andesite–trachyandesite–dacite) and pyroclastic rocks. Laser-ablation–inductively coupled plasma–mass spectrometry zircon U–Pb dating gives an eruption age of ca. 265 Ma for the pyroclastic rocks in the VRSMF. These rocks are classified as low- to medium-K calc-alkaline series. They are characterized by enrichments in large-ion lithophile elements (e.g., K, Rb, and Ba) and light rare earth elements, and depletions in high field-strength elements (e.g., Nb, Ta, and Ti) and heavy rare earth elements, showing affinity to igneous rocks formed in arc-related tectonic settings. These features, together with homogeneous zircon εHf(t) values of 10.9–15.7 and depleted Sr–Nd isotopic compositions [εNd(t) values of 2.4–5.0], suggest that the parental magma was derived from the partial melting of depleted mantle that had been metasomatized by subduction-related fluids. These results, along with findings of regional geological investigations, suggest that the formation of the VRSMF was related to subduction of the Paleo-Asian oceanic plate during the middle Permian. The VMS-type mineralization in the Hongtaiping and Dongfengnanshan deposits is interpreted to have formed in a bimodal–felsic setting in a back-arc extensional tectonic environment.  相似文献   

10.
Island chains off western Kyushu are the surface exposure in the northern margin of the Taiwan–Sinzi Folded Zone that spreads along the arc–trench system in the back-arc side from SW Japan to Taiwan. Intermittent igneous activity between the Middle Miocene and Holocene occurred on these islands and widely covered or intruded sedimentary rocks of Early–Middle Miocene. Geochemistry of the volcanic rocks from the Hirado, Ikitsuki and Takushima islands believed to relate to the back-arc opening along the East China and Japan Seas shows a temporal change in source material. Submarine to sub-aerial volcanism occurred on Hirado Island at 15 Ma during the final opening stage of the East China Sea producing tholeiitic basalt and associated andesite–dacite. These eruptives show low incompatible element contents and high FeO*/MgO ratios and reflect a tholeiitic differentiation trend. High Sr and Pb and low Nd isotopic ratios suggest the involvement of EM2-like lithospheric mantle and crustal material in the formation of these syn-opening volcanic rocks. Post-opening alkali basalt volcanism occurred at 9–6 Ma on the islands is characterized by OIB-like higher large ionic lithophile elements (LILE) and high field strength elements (HFSE) compared to 15 Ma basalts in this region and Quaternary basalts along the volcanic front. They have variable range of incompatible element concentrations and ratios along with variable Sr, Pb and Nd isotopic ratios suggesting the involvement of both lithospheric and asthenospheric sources at variable melting degrees (from 4% to less than 15%). The observation that the isotopic compositions of Quaternary alkali basalts south of the studied area are even more depleted suggests an increase in the involvement of asthenospheric source with time.  相似文献   

11.
Late Cenozoic intraplate basaltic rocks in northeastern China have been interpreted as being derived from a mantle source composed of DMM and EM1 components. To constrain the origin of the enriched mantle component, we have now determined the geochemical compositions of basaltic rocks from the active Baekdusan volcano on the border of China and North Korea. The samples show LREE-enriched patterns, with positive Eu and negative Ce anomalies. On a trace element distribution diagram, they show typical oceanic island basalt (OIB)-like LILE enrichments without significant Nb or Ta depletions. However, compared with OIB, they show enrichments in Ba, Rb, K, Pb, Sr, and P. The Nb/U ratios are generally within the range of OIB, but the Ce/Pb ratios are lower than those of OIB. Olivine phenocrysts are characterized by low Ca and high Ni contents. The radiogenic isotopic characteristics (87Sr/86Sr = 0.70449 to 0.70554; εNd = −2.0 to +1.8; εHf = −1.7 to +6.1; 206Pb/204Pb = 17.26 to 18.12) suggest derivation from an EM1-like source together with an Indian MORB-like depleted mantle. The Mg isotopic compositions (δ26Mg = −0.39 ± 0.17‰) are generally lower than the average upper mantle, indicating carbonates in the source. The 87Sr/86Sr ratios decrease with decreasing δ26Mg values whereas the 143Nd/144Nd and (Nb/La)N ratios increase. These observations suggest the mantle source of the Baekdusan basalts contained at least two components that resided in the mantle transition zone (MTZ): (1) recycled subducted ancient (∼2.2–1.6 Ga) terrigenous silicate sediments, possessing EM1-like Sr–Nd–Pb–Hf isotopic signatures and relatively high values of δ26Mg; and (2) carbonated eclogites with relatively MORB-like radiogenic isotopic compositions and low values of δ26Mg. These components might have acted as metasomatizing agents in refertilizing the asthenosphere, eventually influencing the composition of the MTZ-derived plume that produced the Baekdusan volcanism.  相似文献   

12.
Samples of volcanic rocks from Alborán Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr–Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alborán Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (0.5×N-MORB), especially Nb (0.2×N-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. 143Nd/144Nd ratios fall in the same range as many island-arc and back-arc basin samples, whereas 87Sr/86Sr ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (87Sr/86Sr)0 up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr–Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies.

The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westernmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain.  相似文献   


13.
There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538–0.70642, 143Nd/144Nd of 0.51233–0.51218, 206Pb/204Pb of 17.74–18.25, 207Pb/204Pb of 15.51–15.57, and 208Pb/204Pb of 38.18–38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr–Nd–Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred.  相似文献   

14.
Yanhong He  Guochun Zhao  Min Sun  Yigui Han 《Lithos》2010,114(1-2):186-199
As part of the Xiong'er volcanic belt along the southern margin of the North China Craton, volcanic rocks in the Xiaoshan and Waifangshan areas have a compositional range from the basaltic andesite, andesite, dacite to rhyolite, which display consistent variation trends in terms of their major and trace elements and Sr–Nd isotopic compositions. The variable Yb contents with nearly constant La/Yb and Tb/Yb ratios of volcanic rocks in two areas suggest that the fractional crystallization may have played an important role in the differentiation from the basaltic andesite, through andesite and dacite, to rhyolite. The volcanic rocks in these two areas are characterized by the LILE and LREE enrichments and negative HFSE anomalies, implying hydrous melting of a mantle wedge in a subduction zone. Variable Sr/Nd ratios of the basaltic andesite and andesite are interpreted as a result of the fluid addition from a subducting slab. Non-radiogenic Nd isotopic compositions as well as high Zr/Y and Nb/Y ratios suggest that the volcanic rocks in these areas were derived from an enriched mantle source. On the other hand, the volcanic rocks of the basaltic andesite and andesite possess markedly higher Fe–Ti and HFSE concentrations than those of typical intra-oceanic arcs, implying that the mantle source from which the volcanic rocks were derived was metasomatised by siliceous melts during the Archean to Paleoproterozoic subduction/collision in the Trans-North China Orogen. These data suggest that in the Paleo-Mesoproterozoic, the southern margin of the North China Craton was most likely an Andean-type continental arc in which slab dehydration not only induced the melting of a pre-existing metasomatised mantle source, but also released LILE-enriched fluids into the mantle source, masking the inherent HFSE-enriched characteristics of the volcanic rocks along the southern margin of the craton. The results of this study indicate that the North China Craton, like many other continental components (e.g. North America, Greenland, Baltica, Amazonia, Australia, etc.) of the supercontinent Columbia (Nuna), also underwent a subduction-related outgrowth along its southern margin during the Paleo-Mesoproterozoic time.  相似文献   

15.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

16.
The Usun Apau plateau lies in a remote area of Sarawak along the Tinjar Line, which defines the onshore part of a suture between the Luconia and Dangerous Grounds blocks. Reconnaissance studies in late 1950s established that the plateau is composed of a bimodal suite of young volcanic rocks, but no further work exists to constrain the age and petrogenesis of the Usun Apau volcanics. We present and discuss new data from a suite of volcanic rocks recently collected from the Usun Apau region. These data include 40Ar–39Ar age dates of mineral separates, major and trace element geochemistry, and Sr, Nd, Pb isotope geochemistry. The Usun Apau plateau is constructed largely of dacite and andesite erupted between 3.9 and 4.1 Ma. Minor basaltic dikes and flows (ca. 2.1 Ma) represent a distinctly younger episode of volcanism that is similar in age and character to the Linau Balui basalts about 100 km SE of the plateau. Although the trace element and isotopic suites from both areas indicate the parental melts were generated from a garnet-bearing, LILE-enriched, non-HIMU OIB-like mantle source, depletion in the HREEs and a negative Nb anomaly impart some characteristics of an island arc-type source contribution. The Usun Apau and Linau Balui volcanics are too young to be directly linked to subduction beneath Borneo; indicating a source region possibly modified by an older episode of subduction. Sr, Nd, Pb inter-isotope correlations plot within the same arrays as Pliocene basalts from the Southern Sulu Arc (500 km NE) which suggests much of northern and central Borneo is underlain by similar lithosphere. Assimilation–fractional crystallization modeling indicates that differentiation of the Usun Apau dacite magmas included assimilation of continental crust with very low 143Nd/144Nd. Modeling different basement compositions as contaminants yielded non-unique results. Triassic Malay granite and different Archean granites represent plausible types of assimilants; whereas crust of Dangerous Grounds and Kontum Plateau do not.  相似文献   

17.
天山北部上石炭统前峡组火山岩地球化学特征及构造意义   总被引:1,自引:0,他引:1  
上石炭统前峡组火山岩位于早石炭世巴音沟蛇绿岩北侧,为一套以火山碎屑岩为主夹熔岩和陆源碎屑岩建造。岩石及地球化学特征显示,该组火山岩是以安山岩为主的玄武岩+玄武安山岩+安山岩+英安岩组合,里特曼指数介于1.20~3.43,属钙碱性系列。稀土总量(ΣREE)为69.53×10-6~111.32×10-6,(Ce/Y)N=1.12~2.25,(La/Yb)N=1.86~5.39,δEu=0.79~1.21,为轻稀土略富集、Eu亏损不明显的火山岩类型。岩石显著富集大离子亲石元素K、Rb、Ba、Th,亏损高场强元素Nb、Ta、Hf、Ti、Y,其中Nb含量绝大多数介于1.89×10-6~2.65×10-6,与大洋地壳Nb含量平均值2.2×10-6接近。锶初始比值为0.70425~0.70428,与岛弧区玄武岩的0.70437接近,这些特征均与俯冲带大陆岛弧火山岩一致。与之伴生的滨浅海-半深海相沉积地层和南部早石炭世巴音沟蛇绿岩的存在,表明前峡组火山岩是巴音沟蛇绿岩所代表的早石炭世洋壳在晚石炭世时期向北俯冲消减的产物。  相似文献   

18.
The northwestern margin of the Junggar Basin is a transition zone between the Zaire-Hala'alate mountains and the Junggar Basin in West Junggar, which developed a large amount of volcanic rocks in the late Carboniferous. An investigation of the tectonic evolution of this area will be helpful for understanding the accretionary process of West Junggar. Here, we selected well-preserved drill core samples of andesite and andesitic tuff for detailed petrogenesis and geochemical studies, while high-quality seismic and resistivity prospecting cross-sections were also used to reveal the tectonic setting. Zircon U-Pb dating results of three andesite and andesitic tuff samples show that these rocks were erupted at ca. 312 Ma. The results of the geochemical and isotopic analyses of seven samples are characterized by relatively high MgO (1.84–5.52 wt%), Cr (26.19–246.61 ppm), Ni (16.53–82.85 ppm) contents, Ba/La (14.19–218.48) ratios, and high positive ɛHf(t) (+4.8 to +14.2) values, but low TiO2 (0.68–1.25 wt%) contents, FeOT/MgO (1.18–2.81), Sr/Y (5.63–27.40), and Th/Yb (0.19–2.18) ratios, which are similar to the Bieluagaxi sanukitoids of West Junggar. LREEs are enriched in all samples, while Nb and Ta are significantly depleted. All the evidence suggests the volcanics were most likely derived from partial melting of oceanic slab that was contaminated by the overlying mantle wedge during the magma ascent. The seismic and resistivity cross-sections show apparent southeastward-vergent imbricate thrust fault systems, implying northwestward subduction in the late Carboniferous. Together with previous studies and our geochemical and geophysical data, we suggest that the formation of these late Carboniferous volcanic rocks is probably related to a northwestward ridge subduction process.  相似文献   

19.
The Baoligaomiao Formation, within the Hegenshan ophiolite-arc-accretion complex is an important segment to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB), world's largest Phanerozoic orogenic belt. In this study, we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the volcanic succession in the Baoligaomiao Formation. The volcanic succession can be divided into the lower sequence with zircon U-Pb ages in the range of 326.3 Ma–307.4 Ma and the upper sequence of 305.3 Ma. The succession belongs to two suites: calc-alkaline volcanics and high-Si rhyolites. The calc-alkaline volcanic rocks include basaltic andesite through andesite and dacite to rhyolite and their pyroclastic equivalents. These rocks exhibit a well-defined compositional trend from basaltic to rhyolitic magma, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. The calc-alkaline rocks have low initial 87Sr/86Sr (0.7023–0.7052), positive ɛNd(t) values (2.75–4.80), and their initial Pb isotopic compositions are 17.875–18.485 of 206Pb/204Pb, 15.481–15.520 of 207Pb/204Pb and 37.467–37.764 of 208Pb/204Pb, respectively. Geochemical and isotopic results suggest that the volcanic succession represents Carboniferous subduction-related, mature, continental arc volcanism. The outcrops of high-Si rhyolites are restricted to the northern edge of the continental arc, marking a transition zone between volcanic arc and back-arc basin, where they are interbedded with the calc-alkaline rocks in the lower sequence, and the upper sequence is composed only of high-Si rhyolites. The high-Si rhyolites have high SiO2 (71.12–81.76 wt%) and varied total alkali contents (K2O + Na2O = 5.46–10.58 wt%), low TiO2 (0.06–0.27 wt%), MgO (0.09–0.89 wt%) and CaO (0.08–0.72 wt%). Based on the presence of mafic alkali phenocrysts, such as arfvedsonite and siderophyllite, high Zr/Nb ratios (> 10) and peralkalinity index (PI) near unity, the high-Si rhyolites can be classified as peralkaline comendites. The high-Si rhyolites are characterized by unusually low Sr and Ba, and high abundance of Zr, Th, Nb, HREEs and Y. They show geochemical characteristics similar to those of typical A2-type granites including their high K2O + Na2O, Nb, Zr and Y, and high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the high-Si rhyolites were derived from discrete trachytic parent magma with fractional crystallization within shallow magma reservoirs. Their Nd-Pb isotopic characteristics are similar to those of the calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile continental arc crust. We observe that the widespread eruptions of A2-rhyolitic magmas (305.3 Ma–303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with voluminous intrusion of the bimodal magmas (304.3 Ma–299.3 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma–307 Ma). We envisage northward subduction and slab breakoff process resulting in an obvious change of the regional stress field to extensional setting within the Carboniferous continental arc running E-W for thousands of kilometers. Therefore, we propose the existence of an east-west-trending Carboniferous continental arc in the Hegenshan ophiolite-arc-accretion complex, with the slab breakoff event suggesting that the age of the upper sequence (305.3 ± 5.5 Ma) likely indicates the maximum age for the cessation of the northward subduction of the Hegenshan oceanic lithosphere.  相似文献   

20.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号