首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 406 毫秒
1.
通过监测三江源玛沁县高寒草甸2017年度植被特征及土壤呼吸通量, 探讨了不同退化阶段植被群落、 土壤呼吸特征及其协同关系, 并分析了土壤呼吸的温度敏感性。结果表明: 随着高寒草甸退化程度加剧, 禾本科植物重要值降低, 毒杂草显著增加(P<0.05); 植被盖度、 物种数、 多样性指数显著下降(P<0.05), 重度退化阶段的地上生物量比轻度、 中度退化阶段降低了25.36%、 22.37%(P<0.05); 在中度退化条件下, 均匀度指数和地下生物量显著增多(P<0.05)。在各退化阶段, 土壤呼吸年内均呈单峰式变化过程, 表现出生长季高、 非生长季低的特征, 植物生长旺季(7 - 8月)最高, 且与5 cm深度处土壤温度之间呈显著指数关系(P<0.05); 2017年轻度退化、 中度退化和重度退化阶段的土壤呼吸碳排放总量分别为626.89 gC·m-2、 386.66 gC·m-2、 393.81 gC·m-2; 同时, 土壤呼吸与植被群落演替具有显著的协同性, 随着退化程度加剧土壤呼吸速率下降。轻度退化、 中度退化、 重度退化阶段土壤呼吸的温度敏感性系数(Q10)分别为2.82、 3.54和2.35, 表明中度退化条件下的温度敏感性最强, 重度退化条件下最弱。  相似文献   

2.
张涛  王根绪  杨燕  毛天旭 《冰川冻土》2018,40(6):1255-1264
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0.30~0.92)高于沼泽草甸(0.12~0.29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0.31和0.36 μmol·m-2·s-1,生长季分别为1.99和2.85 μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419.01 gCO2·m-2,显著高于高寒草甸(1 042.99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268.13和340.40 gCO2·m-2,分别占全年的25.71%和23.99%。两种草地类型生态系统呼吸与气温、5 cm和20 cm地温均显著相关,可解释37%~73%的季节变异,除生长季沼泽草甸外,生态系统呼吸与5 cm地温相关性最高。非生长季5 cm地温对应Q10为4.34~5.02,高于生长季(2.35~2.75),且沼泽草甸高于高寒草甸。生长季生态系统呼吸与土壤水分无显著关系,而非生长季生态系统呼吸受土壤水分显著影响(R2:0.21~0.40),随土壤水分增加而增加。  相似文献   

3.
青南退化高寒草甸植被土壤固碳潜力   总被引:4,自引:1,他引:3  
李英年  徐世晓  赵亮  张法伟 《冰川冻土》2012,34(5):1157-1164
青南与青北高寒草甸植被、 土壤、 气候类型相似, 地植被、 土壤碳密度可比性强. 研究表明, 青南高寒草甸植被退化严重, 植被和土壤碳密度随退化程度的加剧而降低, 轻度、 中度、 重度和极度退化植被碳密度分别为921.281、 809.998、 237.974 gC·m-2和75.972 gC·m-2, 0~40 cm土壤碳密度分别为16.760、 16.145、 14.360 gC·m-2和12.945 kgC·m-2. 在青北未退化草甸植被和0~40 cm层次土壤碳密度分别为1 149.327 gC·m-2和20.305 kgC·m-2. 相对青北高寒草甸植被类型而言, 青南高寒草甸轻度、 中度、 重度、 极度退化的植被固碳密度分别增加228.046、 339.329、 911.354 gC·m-2和1073.355 gC·m-2, 而对应0~40 cm层次土壤固碳密度可分别增加3.545、 4.160、 5.946 gC·m-2和7.359 kgC·m-2. 以青南当地未退化草地而言, 轻度、 中度、 重度和极度退化的高寒草甸0~20 cm层次土壤固碳密度可达1.694、 2.087、 3.537 kgC·m-2和4.282 kgC·m-2, 表现出较大的固碳潜力.  相似文献   

4.
研究季节性放牧对植被耗水量、水分利用效率的影响,是探索如何提高高寒草甸水源涵养能力的重要内容之一。以青藏高原三江源高寒草甸季节性放牧样地与自然放牧样地为研究对象,分析了季节性放牧和自然放牧条件下高寒草甸植被耗水量、水分盈亏量、水分利用效率(WUE)的动态变化及其与环境因素的关系。结果表明:在植被生长季(5-9月),季节性放牧样地和自然放牧样地植被耗水量在5月开始增加, 7月达最高,分别为160.94 mm和145.96 mm,季节性放牧样地植被总耗水量(395.52 mm)比自然放牧样地(348.14 mm)高13.61%。生长季平均来看,季节性放牧样地和自然放牧样地5-9月水分正盈余,分别为13.58 mm和70.96 mm,但在植物生长旺季(8月)略有亏缺。季节性放牧样地和自然放牧样地植被耗水量均与降水量呈弱的正相关关系。季节性放牧样地植被地上净初级生产量(ANPP)、地下净初级生产量(BNPP)和总的净初级生产量(NPP)比自然放牧样地分别高32.54 g·m-2、5.96 g·m-2、38.50 g·m-2,季节性放牧样地ANPP的水分利用效率(WUE)比自然放牧样地高53.85%,而BNPP、NPP的WUE比自然放牧样地分别低13.06%和9.97%。这表明,季节性放牧可提高植被生产量和耗水量,但对高寒草甸WUE的影响因放牧方式不同导致地上、地下生物量分配格局不同而有所差异。  相似文献   

5.
疏勒河上游多年冻土区植物生长季主要温室气体排放观测   总被引:1,自引:1,他引:0  
选取青藏高原东北部疏勒河上游多年冻土区的高寒草甸样地为研究对象, 对2011年植物生长季(6-10月)主要温室气体(CO2、 CH4CH4和CO2)的排放进行了观测. 结果显示: 疏勒河上游多年冻土区高寒草甸地表CO2、 CH4和N2O排放速率范围分别为7.58~418.60 mg·m-2·h-1, -0.20~0.14 mg·m-2·h-1和-27.22~39.98 μg·m-2·h-1. 0~10 cm土壤温度、 含水量和盐分与CO2和CH4排放速率显著相关, 但与N2O排放速率无显著相关. 日均排放速率显示, CO2和N2O在整个观测期均表现为排放; CH4在植物返青期和生长旺盛期表现为排放, 在枯黄期伴随表层土壤发生日冻融循环时为吸收. 从9月30日12:00-10月6日14:40, 表层0~10 cm土壤经历了3次日冻融循环, CO2和N2O日均排放速率分别由冻融前的60.73 mg·m-2·h-1和9.91 μg·m-2·h-1提高到122.33 mg·m-2·h-1和11.70 μg·m-2·h-1. 土壤温度、 含水量和盐分是影响CO2和CH4排放的重要因子, 表层土壤冻融交替作用可提高地表CO2和N2O的排放速率.  相似文献   

6.
青海省天然草地退化及其环境影响分析   总被引:6,自引:0,他引:6  
根据青海省"三江源地区"和"环青海湖地区"典型生态区域1987-2004年代表性牧草观测站植被监测资料和地面气象数据,结合NOAA/AVHRR卫星遥感数据以及调查数据,分析了两区域十几年来草地退化特征.结果表明:中度以上退化草地面积平均以20×104hm2·a-1的速度递增,草地生产力<750 kg·hm-2的草地面积占全省面积的26.99%.三江源地区牧草产量以4.48~16.48 kg·a-1趋势减少,高度以0.16~0.80 cm·a-1的趋势降低,优势牧草株数的线性递减率分别为11株.a-1和16株.a-1,莎草科牧草开花期和籽粒成熟期的发育百分率下降25~50个百分点;环青海湖地区牧草产量以3.05~4.64 kg·a-1趋势减少,高度以0.75~1.28 cm·a-1趋势降低,以禾本科牧草为代表的优良牧草在群落中的比重分别下降了1%~3%,位于青海湖以南地区的温性草原类和温性荒漠类,递减率分别为0.25%·a-1和0.38%·a-1.青海省天然草地退化主要是在自然和人为因素等作用下发生的,在自然因素中气候的暖干化趋势是草地退化的重要因素,表现在影响牧草的生育期、产量以及草地的群体结构的变化,而20世纪90年代以来极端天气、气候灾害的增多,进一步加剧了草地的退化;人为控制因素中,表现在草畜季节不平衡造成的超载过牧、人口增长以及草地不均匀的放牧压力等,进一步加剧天然草地生态功能的退化.  相似文献   

7.
山地多年冻土的异质性影响其植被类型的分布特征,且对有机碳的分布也具有重要影响。通过采集黑河上游多年冻土区三种典型植被类型(高寒沼泽草甸、高寒草甸、高寒草原)8个活动层的土壤样品,测定其土壤有机碳密度及其理化性质。结果表明:高寒沼泽草甸土壤有机碳密度最高(49.50 kg·m-2),高寒草甸次之(11.22 kg·m-2),高寒草原最低(7.30 kg·m-2)。土壤有机碳密度的剖面垂直分布特征具有差异性,高寒沼泽草甸土壤有机碳密度随深度变化不明显,高寒草原和高寒草甸土壤有机碳密度随深度逐渐减小,存在显著的表层聚集性。有机碳密度与土壤含水率和细粒含量呈显著正相关,与pH值呈显著负相关关系。一般线性模型结果表明土壤含水率、pH值和土壤颗粒组成解释了96.39%的有机碳密度变异,其中土壤含水率贡献了81.53%,pH值和土壤粒度分别贡献了9.33%和4.75%。研究表明多年冻土区不同植被类型土壤有机碳密度分布特征具有明显差异,山地多年冻土土壤含水率是控制有机碳密度分布特征的重要影响因素。  相似文献   

8.
三江源地区是我国重要生态安全屏障,冻土是其高寒生态系统的重要组成部分,冻土的变化深刻影响高寒生态系统固碳及水源涵养。基于英国东英吉利大学(University of East Anglia,UEA)气候研究中心(Climatic Research Unit,CRU)月平均气温再分析资料,利用线性倾向法和滑动平均法并结合GIS空间分析和制图,计算并分析了三江源地区1901—2018年冻融指数变化趋势及其空间分布特征。结果表明:三江源地区冻结指数在1901—2018年整体以-1.1 ℃·d·a-1的斜率呈波动减少趋势,经历了三个波动变化阶段:1901—1943年的下降(-3.4 ℃·d·a-1)、1943—1966年的升高(8.8 ℃·d·a-1)、1966—2018年的再次下降(-4.3 ℃·d·a-1)。融化指数与冻结指数的变化相反,整体以0.34 ℃·d·a-1的斜率呈波动上升趋势,呈现升高(1901—1943年,3.3 ℃·d·a-1)、下降(1943—1981年,-3.1 ℃·d·a-1)、再次升高(1981—2018年,2.9 ℃·d·a-1)的趋势。在空间分布上,自西向东随海拔和多年冻土连续性降低,冻结指数由3 400 ℃·d递减到600 ℃·d,融化指数由接近0 ℃·d增加到1 800 ℃·d。长江源区冻结指数最大,融化指数最小;黄河源区冻结指数最小,融化指数最大。研究成果可为三江源地区冻土变化及其对高寒生态环境的影响研究提供科学借鉴。  相似文献   

9.
对青藏高原海北站区的自然土壤和扰动土壤进行高分辨率采样,测定土壤根系、有机碳及其14C含量;用14C示踪技术探讨土地利用变化对高寒草甸土壤有机质更新的影响.研究表明,土地利用变化对高寒草甸土壤碳循环影响显著.耕作活动导致扰动土壤有机碳储量比自然土壤增加29.35%;扰动土壤剖面10~50 cm深土壤有机质的14C含量相对富集;自然土壤大多数有机碳储存在土壤表层,更新时间<50 a,同一深度扰动土壤有机碳储量显著少,更新时间长(171~294 a);自然土壤10 cm以下有机碳主要为更新时间>1 000 a的稳定碳所控制,扰动土壤的相应值出现在40 cm以下;自然土壤有机质更新产生的CO2通量为114 gC·m-2·a-1,扰动土壤为48.7 gC·m-2·a-1.  相似文献   

10.
高寒草甸植被生产量年际变化及水分利用率状况   总被引:3,自引:3,他引:0  
分析了海北地区高寒草甸植被2001-2011年11 a耗水量、 生物现存量、 净初级生产量、 水分利用率及其相关性, 结果表明: 植物生长期5-9月耗水量416.30 mm, 植被地上净初级生产量(ANPP)、 地下净初级生产量(BNPP)以及总的净初级生产量(NPP=ANPP+BNPP)分别为393.07 g·m-2、 945.26 g·m-2、 1 338.33 g·m-2, BNPP与ANPP之比为2.404. 8月底植被现存生物量达3 422.92 g·m-2, 其中地上和地下现存量分别为411.07 g·m-2、 3 011.85 g·m-2, BNPP与ANPP之比高达7.327, 说明植被现存量巨大, 归还土壤碳能力强. NPP与5-9月植被耗水量相关性很差, 但与5-9月平均气温具有显著的正相关关系, 表明高寒草甸地区水分条件可满足植物生长的基本需求, 而同期温度是影响NPP提高的重要因素. 11 a来BNPP、 ANPP和NPP平均水分利用率分别为0.958 g·m-2·mm-1、 2.326 g·m-2·mm-1和3.284 g·m-2·mm-1, 表明高寒草甸植被净初级生产具有较高的水分利用率.  相似文献   

11.
冰川表面能量平衡模型建立了冰川与大气之间的联系。为探讨不同天气条件对冰川能量收支的影响, 利用祁连山老虎沟12号冰川海拔4 550 m处的气象资料(2011年8月24日 - 9月6日), 结合能量平衡模型, 分析了不同天气条件下的能量收支变化特征。结果表明: 受云量影响, 晴天条件下向下短波辐射(318.3 W·m-2)是多云条件下的1.5倍, 是阴天条件下的3倍。三种天气条件下的向下长波辐射, 晴天(215.4 W·m-2)<多云(267.4 W·m-2)<阴天(291.6 W·m-2)。受固态降水的影响, 阴天条件下冰川反照率(0.50)是晴天时的2倍多。而三种天气下的最大消融耗热, 晴天(739.6 W·m-2)>多云(582.8 W·m-2)>阴天(324.5 W·m-2)。在能量收入项中, 净短波辐射是主要来源(98%), 但是受天气条件影响, 能量支出各项所占比例有明显差异; 在三种天气条件下, 净长波辐射所占比例分别为35%、 31%和23%, 消融耗热所占比例分别为62%、 64%和75%, 潜热通量所占比例相差不大。  相似文献   

12.
Glacial meltwater is an important freshwater resource in the Caucasus and is important for regional irrigation and hydroelectricity generation. This paper analyses the spatial and temporal patterns of glacier change in the Caucasus Mountains from 1960 to 2020 based on Landsat images, coherence images from Sentinel-1 image pairs, GLIMS glacier inventory and WGMS glacier mass balance data. The results of the study show that in 2020 there were 1912 glaciers in the Caucasus Mountains, with a total area of(1 087. 36±66. 44)km2. The total glacier area shrank by(587. 36±98. 66)km2(35. 07±5. 89%)between 1960 and 2020, with an average annual shrinkage rate of(0. 58±0. 10%)·a-1. The area shrinkage rates of Caucasian glaciers for 1960-1986, 1986-2000 and 2000-2020 are(0. 44±0. 20%)·a-1, (0. 66±0. 77%)·a-1 and(0. 96±0. 31%)·a-1, respectively, indicating that Caucasian glaciers in a state of accelerated retreat over the last 60 years. Analysis of mass balance information shows that both the Djankuat and Garabashi glaciers in the Caucasus have been in a strong negative equilibrium for nearly 60 years, with a significant acceleration of mass deficit after 2000. Analysis of climate data suggests that the strong warming is the main reason for the accelerated retreat of glaciers in the Caucasus mountains in recent decades. © 2022 The authors.  相似文献   

13.
利用被动微波探测青海湖湖冰物候变化特征   总被引:3,自引:2,他引:1  
湖冰物候是气候变化的敏感因子,不仅能反映区域气候变化特征,还可以反映区域气候与湖泊相互作用。利用长时间序列(1978—2018年)被动微波遥感18 GHz和19 GHz亮度温度数据、MODIS数据(2000—2018年)、实测湖冰厚度数据(1983—2018年)和气温、风速、降水(雪)数据(1961—2018年),分析青海湖湖冰变化特征及其对气候变化的响应。结果表明:青海湖流域呈现显著的变暖趋势(1961—2018年),气温上升2.85 ℃,在这种气候条件下,青海湖湖冰封冻日推迟(0.23 d·a-1),消融日呈现明显的提前趋势(0.33 d·a-1),湖冰封冻期天数明显减少,减少速率为0.57 d·a-1;同时,湖冰厚度以0.29 cm·a-1的速率减薄。此外,总结归纳了青海湖冻结-融化空间特征,青海湖主要由东部海晏湾地区开始冻结,从西部黑马河等地区开始消融,冻结和消融过程存在空间差异。通过分析湖冰冻融特征和气候因子关系发现,青海湖流域冬季气温是影响青海湖湖冰物候变化的主要因素,同时风速和降水(雪)也是影响湖冰发育和消融的重要因素。  相似文献   

14.
基于Landsat系列卫星遥感影像、 SRTM DEM和TanDEM-X DEM对喀喇昆仑山中部Shigar流域不同类型冰川的面积变化、 物质平衡进行了分析。结果表明: 1993—2016年间Shigar流域内有25条跃动冰川(面积增加1.30 km2), 68条前进冰川(面积增加0.86 km2), 50条退缩冰川(面积减少3.48 km2), 376条稳定冰川(面积减少1.34 km2)。跃动冰川的冰川长度和规模均集中在较大范围内, 前进冰川的规模略高于退缩冰川, 退缩冰川多为小规模冰川, 特大规模冰川保持稳定状态; 不同类型冰川的空间分布差异较大, 且不同海拔带内水热组合条件不一致也影响冰川运动状态。2000—2013年间, 流域内跃动冰川物质平衡为(+0.17±0.03) m w.e.·a-1, 前进冰川物质平衡为(-0.01±0.03) m w.e.·a-1, 退缩冰川物质平衡为(-0.22±0.03) m w.e.·a-1, 稳定冰川物质平衡为(-0.01±0.03) m w.e.·a-1。四类冰川表面高程变化随归一化冰川长度的变化模式以及不同海拔带内和不同坡度区间的冰川表面高程变化显示: 跃动冰川主要特征是积累区物质积累量大; 前进冰川上部物质积累并且向下运动推动冰川末端前进; 退缩冰川消融区物质亏损量大使得冰川末端退缩。  相似文献   

15.
西藏阿里地区大、小昂龙冰川变化观测研究   总被引:1,自引:1,他引:0  
在西藏阿里地区狮泉河上游的大、小昂龙冰川开展了连续2年(2014—2016年)的冰川变化地面观测,主要包括冰川表面物质平衡与差分GPS高程变化同步观测,以及冰川表面流速观测,冰川末端观测和冰川雷达测厚。观测结果表明:大、小昂龙冰川表面物质平衡与同期差分GPS观测结果之间存在差异。冰川表面物质平衡结果显示,2014—2016年间,大、小昂龙冰川分别以每年72 mm w.e.和219 mm w.e.的速率减薄。差分GPS观测结果显示,同期大、小昂龙冰川分别以每年(442±90) mm w.e.和(265±90) mm w.e.的速率减薄;在2015/2016年,大、小昂龙冰川表面平均流速分别为4.4 m·a-1和2.3 m·a-1,其中大昂龙冰川表面平均流速较上一物质平衡年增加了10.5%;2014—2016年间,小昂龙冰川先是前进了11 m,之后又退缩了34 m,两年内平均每年退缩11.5 m;大昂龙冰川平均冰厚为67.9 m,实测最大厚度为216 m,根据雷达测厚数据插值计算的冰川储量为0.452 km3;小昂龙冰川实测最大厚度为190 m。  相似文献   

16.
基于多源数据的天山乌鲁木齐河源1号冰川变化研究   总被引:1,自引:1,他引:0  
基于2012年RTK-GPS、2015年三维激光扫描和2018年无人机航测数据,以天山乌鲁木齐河源1号冰川为研究区,分别从物质平衡、面积、末端等方面分析近期冰川变化。结果表明:乌鲁木齐河源1号冰川近年来呈快速消融趋势。2012—2018年冰川面积减少0.07 km2,年平均面积变化率为-0.01 km2·a-1;同期,冰川末端退缩率为6.28 m·a-1,且2015—2018年退缩速率大于2012—2015年;2012—2018年间表面高程下降,物质平衡为-1.13±0.18 m w.e.·a-1,物质损失主要发生在消融区。将2012—2018年间大地测量法冰川物质平衡与传统的花杆/雪坑法观测结果相比较,发现二者较为一致。而2012—2018年间物质平衡减小速率(-0.64 m w.e.·a-1)大于1980—2012年间(-0.47 m w.e.·a-1),表明近期乌鲁木齐河源1号冰川继续呈快速消融趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号