首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BERMAN  R. G. 《Journal of Petrology》1988,29(2):445-522
Internally consistent standard state thermodynamic data arepresented for 67 minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2.The method of mathematical programming was used to achieve consistencyof derived properties with phase equilibrium, calorimetric,and volumetric data, utilizing equations that account for thethermodynamic consequences of first and second order phase transitions,and temperature-dependent disorder. Tabulated properties arein good agreement with thermophysical data, as well as beingconsistent with the bulk of phase equilibrium data obtainedin solubility studies, weight change experiments, and reversalsinvolving both single and mixed volatile species. The reliabilityof the thermodynamic data set is documented by extensive comparisons(Figs. 4–45) between computed equilibria and phase equilibriumdata. The high degree of consistency obtained with these diverseexperimental data gives confidence that the refined thermodynamicproperties should allow accurate prediction of phase relationshipsamong stoichiometric minerals in complex chemical systems, andprovide a reasonable basis from which activity models for mineralsmay be derived.  相似文献   

2.
The formation of the solid solution series MgCO3-FeCO3 in the system Mg2+-Fe2+-CO 3 2? -Cl 2 2? -H2O has been investigstad between 200° C and 500° C. The experimental results show that the composition of any of these carbonates strongly depends on the temperature: At high temperatures mixed crystals rich in MgCO3 are formed and low temperatures lead to the formation of FeCO3-rich carbonates. Thus, at 200° C a Fe-poor (Mg-rich) solution is in equilibrium with a Fe-rich carbonate. At temperatures higher than 350° C a Fe-rich (Mg-poor) solution coexists with a Fe-poor (Mg-rich) solid phase; see Fig. 1. At 350° C a solution with a mole fractionmFe2+/(mFe2++mMg2+) of 0.20 leads to the formation of magnesite very poor in Fe, whereas at 250° C the same solution is in equilibrium with sideroplesit, containing 80 Mol-% FeCO3, see Figs. 2 and 3. The importance of the experimental results for the formation of deposits of magnesite and siderite is discussed.  相似文献   

3.
A series of stable pentasulfide complexes of the common base metals, Mn, Fe, Co, Ni, Cu and Zn exist in aqueous solutions at ambient temperatures. Pure sodium pentasulfide was prepared and reacted with the divalent cations of Mn, Fe, Co, Ni, Cu and Zn in aqueous solution at ambient temperature. The S52- complexes were found to exist as determined by voltammetric methods.Pentasulfide complexes with compositions assigned as [M(1-S5)] and [M2(- S5)]2+ occur for Mn, Fe, Co and Ni where only one terminal S atom in the S52- binds to one metal (1 = mono-dentate ligand or M-S-S-S-S-S, = ligand bridging two metal centers or M-S-S-S-S-S-M). Conditional stability constants are similar for all four metals with log 1 between 5.3 and 5.7 and log 2 between 11.0 and 11.6. The constants for these pentasulfide complexes are similar to the tetrasulfide complexes and are approximately 0.4–0.8 log units higher than for comparable bisulfide complexes [M(SH)]+ as expected based on the higher nucleophilicity of S52- compared to HS-. Voltammetric results indicate that these are labile complexes.As with the bisulfide and tetrasulfide complexes, Zn(II) and Cu(II) are chemically distinct from the other metals. Zn(II) reacts with pentasulfide to form a stable monomeric pentasulfide chelate, [Zn(1-S5)] with log = 8.7. Cu(II) reacts with pentasulfide to form a complex with the probable stoichiometry [Cu(S5)]2 with log estimated to be 20.2. As with the other four metals, these complexes are comparable with the tetrasulfide complexes. Discrete voltammetric peaks are observed for these complexes and indicate they are electrochemically inert to dissociation. Reactions of Zn(II) and Cu(II) also lead to significant breakup of the polysulfide.The relative strength of the complexes is Cu > Zn > Mn, Fe, Co, Ni. Cu displaces Zn from [Zn(1- S5)] and both Cu and Zn displace Mn, Fe, Co and Ni from their pentasulfide complexes.  相似文献   

4.
Single crystal Raman spectra of pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, and PtAs2 are presented and discussed with reference to the energies of the X-X stretching modes x-x (A g, F g) and the X2 librations (E, 2Fg). The main results obtained are (i) strong Raman resonance effects, (ii) different sequences for x-x (A g) and (E g), i.e., R_{x_2 } $$ " align="middle" border="0"> for PtP2 and PtAs2 and R_{x_2 } $$ " align="middle" border="0"> for OsS2, owing to the interplay of intraionic and interionic lattice forces, (iii) greater strengths for the intraionic P-P and As-As bonds compared to the S-S and Se-Se bonds, respectively, and (iv) a strong influegnce of the metal ions on the strength of the X-X bonds.This is contribution LXI of a series of papers on lattice vibration spectra  相似文献   

5.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

6.
7.
A revised equation is proposed to represent and extrapolate the heat capacity of minerals as a function of temperature: C P=k0+k1 T –0.5+k2 T –2+k3 T –3 (where k1, k20).This equation reproduces calorimetric data within the estimated precision of the measurements, and results in residuals for most minerals that are randomly distributed as a function of temperature. Regression residuals are generally slightly greater than those calculated with the five parameter equation proposed by Haas and Fisher (1976), but are significantly lower than those calculated with the three parameter equation of Maier and Kelley (1932).The revised equation ensures that heat capacity approaches the high temperature limit predicted by lattice vibrational theory (C P=3R+2VT/). For 16 minerals for which and have been measured, the average C Pat 3,000 K calculated with the theoretically derived equation ranges from 26.8±0.8 to 29.3±1.9 J/(afu·K) (afu = atoms per formula unit), depending on the assumed temperature dependence of . For 91 minerals for which calorimetric data above 400 K are available, the average C Pat 3,000 K calculated with our equation is 28.3±2.0 J/(afu·K). This agreement suggests that heat capacity extrapolations should be reliable to considerably higher temperatures than those at which calorimetric data are available, so that thermodynamic calculations can be applied with confidence to a variety of high temperature petrologic problems.Available calorimetric data above 250 K are fit with the revised equation, and derived coefficients are presented for 99 minerals of geologic interest. The heat capacity of other minerals can be estimated (generally within 2%) by summation of tabulated oxide component C Pcoefficients which were obtained by least squares regression of this data base.  相似文献   

8.
9.
Various members of the KAlSi3O8-BaAl2Si2O8 feldspar series are hydrothermally synthesized. Cellparameters of these are calculated from diffractometer patterns and found to be similar to those of Gay and Roy. A variation diagram is constructed correlating Cn-content and values of ΔFeKα(2θ(111)CaF2—2θ(004)Fsss), which gives $${\text{Mol}}\% {\text{ Cn = 229}}{\text{.83}}\Delta {\text{2}}\theta ---{\text{190}}{\text{.81}}$$ by a least square regression fitting. Phase equilibria relation in the solidus-liquidus-region for the KAlSi3O8-BaAl2Si2O8-H2O system at 1000 kg/cm2 are investigated. It is found to be a case of simple solid solution in a binary system, with reservations at the potassium-rich side of the system. Goranson (1938) gives a temperature of about 1000°C at 1000 kg/cm2 \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) for the incongruent melting of sanidine, but the authors prefer a value around 930°C at the same \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) . Reaction products of starting materials on the join KAlSi2O6-BaAl2Si2O8 and KAlSiO4-BaAl2Si2O8 gave no experimental hint for replacement of K+ by Ba++.  相似文献   

10.
11.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

12.
Phase relations in the ternary systems Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3 were studied using the silica vacuum technique. In the system Ag2S-Cu2S-Bi2S3 the phase relations are dominated by join-lines from galena to f.c.c. (Agx Cu2−xS) and b.c.c. (Cux Ag2−xS) at 500°C. With decreasing temperature, galena can coexist with all the phases on the Ag2S-Cu2S join. There are six solid solutions, and one new phase, i.e., “C” whose composition is Ag1.1 Cu4.8Bi5.8S12 in the system Ag2S-Cu2S-Bi2S3 at 500°C. The pavonite (AgBi3S5) contains 14 mole% Cu2S in solid solution, but only 3.0 mole% Ag2S in CuBi3S5 solid solution. The Cu3Bi5S9 ss and wittichenite (Cu3BiS3) ss can form join-lines with pavonite as and have the maximum contents of 9.0 and 18 mole% Ag2S. The most striking feature is the presence of bejaminite as a stable phase with a chemical formula of Ag2Bi4S7 on the Ag2S-Bi2S3 join. AgBiS2 of the PbS type occupies a fairly large field with a maximum of 23 mole% Cu2S.  相似文献   

13.
The stability of merwinite (Mw) and its equivalent assemblages, akermanite (Ak)+calcite (Cc), diopside (Di)+calcite, and wollastonite (Wo)+monticellite (Mc)+calcite was determined at T=500–900° C and P f=0.5–2.0 kbar under H2O–CO2 fluid conditions with X CO 2=0.5, 0.1, 0.05, and 0.02. Merwinite is stable at P f=0.5 kbar with T>700° C and X CO 2<0.1. At P f=2.0 kbar, the assemblage Di+Cc replaces merwinite at all T and X CO 2 conditions. At intermediate P f=1 kbar, the assemblage Ak+Cc is stable above 707° C and Wo+Mc+Cc is stable below 707° C. The univariant curve for the reaction Di+Cc=Wo+Mc+CO2 is almost parallel to the T axis and shifts to low P f with increasing X CO 2, with the assemblage Di+Cc on the high-P f side. The implications of the experimental results in regard to contact metamorphism of limestone are discussed using the aureole at Crestmore, California as an example.  相似文献   

14.
本文用抽空石英管法对三元硫化物体系Ag_2S-Cu_2S-PbS和Ag_2S-Cu_2S-Bi_2S_3在500℃的相图进行了研究。 Ag_2S-Cu_2S-PbS体系500℃相关系,受方铅矿和固溶体f.c.c.(Ag_xCu_(2-x)S)、b.c.c.(Cu_xAg_(2-x)S)所控制。在接近PbS-Cu_2S连线处有一液相区。随温度下降,方铅矿可与Cu_2-Ag_2S二元系上所有各相平衡共存。 Ag_2S-Cu_2S-Bi_2S_3体系在500℃时则包含六个固溶体,即块硫铋银矿、铜银铅铋矿、杂硫铋银矿、硫铋铜矿、CuBi_3S_5、Cu_3Bi_5S_9和新合成“C”(Ag_(1.1)Cu_(4.8)Bi_(5.8)S_(12))。最令人感兴趣的是无铜、无铅的铜银铅铋矿(Ag_2Bi_4S_7)合成成功。 以上二个三元系中矿物稳定性及共生关系也根据相图研究结果进行了讨论。  相似文献   

15.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

16.
The interdependence of the Fe(Mg)–1 (e.g., FeO-MgO in silicate melt; CaFeSi2O6-CaMgSi2O6 in pyroxene) and TiAl2(MgSi2)–1 exchange reactions between silicate melts and coexisting Ca-pyroxene has been examined. High-calcium clinopyroxenes were grown in 1 atmosphere melting and crystallization experiments on rock powders spanning the composition range tholeiite to melilitite (1,0922+Mg2+ exchange and suggest that at given values of extent of Fe(Mg)–1 substitution is strongly coupled with the TiAl2(MgSi2)–1 substitution in pyroxenes near the five-component space CaMg(Si2O6-CaFe(Si)2O6-CaTi(Al)2O6-CaFe(Al,Si)2O6-CaAl(Al,Si)2O6. The inferred stabilization of Ti in iron-rich relative to magnesium pyroxene is consistent with the operation of Fe2+Ti4+ intervalence charge transfer interactions (e.g., Rossman 1980) and observations on zoning in natural titanaugites (e.g., Tracy and Robinson 1977). Although the rims of some pyroxenes grown in some melting experiments exhibit prominent zoning in TiAl2(MgSi2)–1, the average values of inferred from the compositions of these pyroxenes, together with those of the relatively homogeneous pyroxenes produced in crystallization experiments, exhibit a 11 correlation with values of derived from the solution model of Ghiorso et al. (1983) with a standard error of 750 calories. The Ti contents of Ca-rich pyroxenes crystallizing from a wide range of natural silicate liquids can therefore be predicted.  相似文献   

17.
Summary Phase fields intersected by three joins in the System CaO-MgO-SiO2-CO2-H2O at 2 kbar were investigated experimentally to determine the melting relationships and the sequences of crystallization of liquids co-precipitating silicate minerals and carbonates. These joins connect SiO2 to three mixtures of CaCO3-MgCO3-Mg(OH)2 with compositions on the primary îield for calcite, between the composition CaCO3 and the low-temperature (650°C eutectic liquid co-precipitating calcite, dolomite and periclase. In the pseudo-quaternary tetrahedron calcite-magnesite-brucite-diopside, two of the significant reactions found are: (1) a eutectic at 650°C, calcite + dolomite + periclase + forsterite + vapor = liquid, and (2) a peritectic at 1038°Cwhich is either calcite + åkermanite + forsterite + vapor = monticellite + liquid calcite + monticellite + forsterite + vapor = åkermanite + liquid. The eutectic liquid has high MgO/CaO and CO2/H2O and only 2–3% SiO2 (estimated 15–20% MgCO3, 35–40% CaCO3, 40–45% Mg(OH)2, and 5–6% Mg2SiO4). The composition joins intersect a thermal maximum for åkermanite + forsterite + vapor = liquid, which separates high-temperature liquids precipitating silicates together with a little calcite, from low-temperature liquids precipitating carbonates with a few percent of forsterite; there is no direct path between the silicate and synthetic carbonatite liquids on these joins, but it is possible that fractionating liquid paths diverging from the joins may connect them. More complex relationships involving the pprecipitatioon off monticellite and åkermanite are also outlined. Magnetite-magnesioferrite may replace periclase in natural magmatic systems. The results indicate that the assemblage calcite-dolomite-magnetite-forsterite represents the closing stages of crystallization of carbonatites, whereas assemblages such as calcite-magnetite-forsterite and dolomite-magnetite-forsterite span the whole range of carbonatite evolution in terms of temperature and composition, and provide the link between liquids precipitating silicates and those precipitating carbonates.
Die Beziehungen zwischen silikarischen Schmelzen und karbonatbildenden Schmelzen im System CaO-MgO-SiO2-CO2-H2O bei 2 kbar
Zusammenfassung Phasenfelder, die durch den Schnitt von drei Verbindungslinien im System CaO-MgO-SiO2-CO2-H2Odefiniert werden, wurden experimentell bei 2 kbar untersucht, um die Schmelzbeziehungen und die Kristallisationsfolge von Schmelzen, die gleichzeitig silikatische und karbonatische Minerale ausscheiden, zu bestimmen. Diese Linien verbinden SiO2 mit drei Mischungen von CaCO3-M9CO3-Mg(OH)2 mit Zusammensetzungen im primären Calcitfeld, zwischen der Zusammensetzung CaCO3 und der tieftemperierten (650°C Calcit-, Dolomit- und Periklasbildenden eutektischen Schmelze. Zwei wichtige im ppseudo-quaternären Tetraeder Calcit-Magnetit-Brucit-Diopsid gefundene Reaktionen sind: (1) Ein Eutektikum bei 650°C Calcit + Dolomit + Periklas + Forsterit + Vapor = Liquid und (2) ein Peritektikum bei 1038°C mit entweder Calcit + Åkermanit + Forsterit + Vapor = Monticellit + Liquid oder Calcit + Monticellit + Forsterit + Vapo = Åkermanit + Liquid Die eutektische Schmelze zeigt hohe MgO/CaO und CCO2H2O Verhältnisse und nur 2–3% SiO2(geschätzter Anteil an MgCO315–20%, CaCO3 35–40%, Mg(OH)2 40–50% und Mg2SiO4 5–6%). Die Verbindungslinie schneidet ein thermisches Maximum von Åkermanit + Forsterit + Vapor = Liquid, das höher temperierte Schmelzen, die Silikate gemeinsam mit etwas Clacit ausscheiden, von tiefer temperierten Schmelzen trennt, aus denen sich Karbonate gemeinsam mit wenigen Prozenten Forsterit abscheiden. Es existiert keine direkte Verbindung zwischen silikatischen und synthetischen karbonatitischen Schmelzen entlang dieser Verbindungslinien, es wäre aber möglich, daß Fraktionierungspfade, die von diesen Verbindungslinien ausgehen, sie verbinden. Komplexere Beziehungen, die die Kristallisation von Monticellit und Åkermanit beinhalten, werden ebenfalls aufgezeigt. Magnetit-Magnesioferrit könntean die Stelle von Periklas in nnatürlichenmagmatischen Systemen treten. Die Ergebnisse weisen darauf bin, daß die Vergesellschaftung Calcit-Dolomit-Magnetit-Forsterit das Endstadium der Karbonatitkristallisation repräsentiert, während die Vergesellsschaftungen von Calcit-Magnetit-Forsterit bzw. Dolomit-Magnetit-Forsterit die gesamte Spannweite der Karbonatitevolution hinsichtlich Temperatur und Zusammensetzung umfassen und demnach ein Verbindungsglied zwischen silikat- und karbonatausscheidenden Schmelzen darstellen.


With 8 Figures  相似文献   

18.
Using an internally consistent thermodynamic dataset and updatedmodels of activity–composition relation for solid solutions,petrogenetic grids in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NKMASH and NKFASH have been calculated withthe software THERMOCALC 3.1 in the PT range 5–36kbar and 400–810°C, involving garnet, chloritoid,biotite, carpholite, talc, chlorite, kyanite/sillimanite, staurolite,phengite, paragonite, albite, glaucophane, jadeite, with quartz/coesiteand H2O in excess. These grids, together with calculated AFMcompatibility diagrams and PT pseudosections, are shownto be powerful tools for delineating the phase equilibria andPT conditions of Na-bearing pelitic assemblages for avariety of bulk compositions from high-P terranes around theworld. These calculated equilibria are in good agreement withpetrological studies. Moreover, contours of the calculated phengiteSi isopleths in PT pseudosections for different bulkcompositions confirm that phengite barometry is highly dependenton mineral assemblage. KEY WORDS: phase relations; HP metapelite; NKFMASH; THERMOCALC; phengite geobarometry  相似文献   

19.
New germanate analogs of the mineral surinamite, Mg3Al4BeSi3O16, have been synthesized with composition Mg4A4Ge3O16 (A=Al, Ga) and have been characterized by powder X-ray diffraction and transmission electron microscopy. The Al surinamite phase crystallizes with a primitive unit-cell (P2/n, a=10.153(1), b=11.708(2), c=9.920(1) Å, β=110.18 (2)° and Z=4) similar to that of the silicate mineral. The Ga surinamite-like phase crystallizes with a larger unit-cell (C2/c, a=10.308(2), b=23.690(5), c=10.057(l) Å, β=110.23 (2)° and Z=8). High-resolution electron microscopy has shown the common formation of intergrowths between the surinamite and sapphirine structures, illustrating the polysomatic structural relationship between them. Observations of disordered microstructures in the Al surinamite suggest the occurrence of a P2/n?C2/c transformation.  相似文献   

20.
Pressure–temperature grids in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O and its subsystems have been calculatedin the range 15–45 kbar and 550–900°C, usingan internally consistent thermodynamic dataset and new thermodynamicmodels for amphibole, white mica, and clinopyroxene, with thesoftware THERMOCALC. Minerals considered for the grids includegarnet, omphacite, diopside, jadeite, hornblende, actinolite,glaucophane, zoisite, lawsonite, kyanite, coesite, quartz, talc,muscovite, paragonite, biotite, chlorite, and plagioclase. Compatibilitydiagrams are used to illustrate the phase relationships in thegrids. Coesite-bearing eclogites and a whiteschist from Chinaare used to demonstrate the ability of pseudosections to modelphase relationships in natural ultrahigh-pressure metamorphicrocks. Under water-saturated conditions, chlorite-bearing assemblagesin Mg- and Al-rich eclogites are stable at lower temperaturesthan in Fe-rich eclogites. The relative temperature stabilityof the three amphiboles is hornblende > actinolite > glaucophane(amphibole names used sensu lato). Talc-bearing assemblagesare stable only at low temperature and high pressure in Mg-and Al-rich eclogites. For most eclogite compositions, talccoexists with lawsonite, but not zoisite, in the stability fieldof coesite. Water content contouring of pressure–temperaturepseudosections, along with appropriate geotherms, provides newconstraints concerning dehydration of such rocks in subductingslabs. Chlorite and lawsonite are two important H2O-carriersin subducting slabs. Depending on bulk composition and pressure–temperaturepath, amphibole may or may not be a major H2O-carrier to depth.In most cases, dehydration to make ultrahigh-pressure eclogitestakes place gradually, with H2O content controlled by divariantor higher variance assemblages. Therefore, fluid fluxes in subductionzones are likely to be continuous, with the rate of dehydrationchanging with changing pressure and temperature. Further, eclogitesof different bulk compositions dehydrate differently. Dehydrationof Fe-rich eclogite is nearly complete at relatively shallowdepth, whereas Mg- and Al-rich eclogites dehydrate continuouslydown to greater depth. KEY WORDS: dehydration; eclogites; phase relations; THERMOCALC; UHP metamorphism; whiteschists  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号