首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracontinental foreland basins with fold-and-thrust belts on the southern periphery of the Tianshan orogenic belt in China resulted from still-active contractional deformation ultimately cased by the India–Asia collision. To quantify the amounts of shortening distance and the rates of deformation, and to decipher the architectural framework, we mapped the stratigraphy and structure of four anticlines in the Kuqa and Baicheng foreland thrust belts in the central southern Tianshan. In the Baicheng foreland thrust belts, Lower Cretaceous Baxigai and Bashijiqike Formations located in the core of the Kumugeliemu anticline are overlain by the Paleocene to Eocene Kumugeliemu Formation, above which are conformable Oligocene through Pleistocene sediments. A disharmonic transition from parallel to unconformable bedding at the boundary of the Miocene Kangcun and Pliocene Kuqa Formations suggests a change from pre-detachment folded strata to beds deposited on top of a growing anticline. Most of the anticlines have steep limbs (70–90°) and are box to isoclinal folds, suggestive of detachment folding or faulted detachment folding (faults that transect a fold core or limb). Shortening estimates calculated from the cross-sections by the Excess area method indicate that the total shortening for the Kelasu, Kuchetawu, Kezile and Yaken sections are 6.3 km, 6.4 km, 5.8 km and 0.6 km, respectively, and the respective depths of the detachment zones are (2.3 km and 6.9 km), 2.3 km, 2.5 km and 3.4 km. Time estimates derived from a paleomagnetic study indicate that the transition to syn-folding strata occurred at ∼6.5 Ma at the Kuchetawu section along the Kuqa river. In addition, according to our field observations and previous sedimentary rate studies, the initial time of folding of the Yaken anticline was at 0.15–0.21 Ma. Therefore, the average shortening rate that began at ∼6 Ma was ∼2 mm/a for the Kelasu, Kuchetawu and Kezile sections. At 0.15–0.21 Ma, the average shortening rate increased to 3–4 mm/a in the Yaken section. Combined with the recent GPS data, the shortening rate in the central southern Tianshan area increased to 4.7 ± 1.5 mm/a at present. We suggest that there was a linear increase in shortening rate in the southern Tianshan foreland basin, which also indicates that the far field stress increased considerably from the late Miocene to Present in response to the India–Asia collision.  相似文献   

2.
The modern Tianshan is an active intracontinental range in central Asia. Its initial timing is poorly known and still hotly debated. As the subsidence of foreland basins is intrinsically coupled with the uplift of orogenic wedges, the foreland sedimentary records may accurately constrain the Tianshan uplifting history. To better address the question, we analyse a seismic profile across the southern Junggar foreland basin to decipher its tectonic and stratigraphic history. Four structural layers can be identified in an ascending order: the Permian – Lower Jurassic transtension‐related layer, the Jurassic – Cretaceous thermal‐subsistence layer, the Palaeogene layer and the Miocene – Quaternary foreland sedimentary layer. The oldest sedimentary sequence in the foreland succession is of the Shawan Formation deposited at ~24 Ma based on magnetostratigraphic constraints. This indicates that foreland deformation in the northern Tianshan and uplifting of the modern Tianshan probably initiated at the beginning of the Miocene.  相似文献   

3.
晚更新世以来南天山阿克苏地区地壳缩短率   总被引:10,自引:7,他引:10       下载免费PDF全文
汪新  John Suppe 《地质科学》2001,36(2):195-202
作者研究南天山中段阿克苏—库车山前带活动断层,发现断层切过托木尔峰山麓第四纪冰碛物和阶地,形成2条断层崖。通过测量阶地和冰碛物的变形量,推断阶地和冰碛物的沉积年代,估算南天山中段阿克苏地区晚更新世以来的地壳缩短率可能为1.85mm/a。这个缩短率与库尔勒地区(2mm/a)和柯坪地区(1.8mm/a)的地壳缩短率一致,但是小于南天山西段喀什地区(10±2mm/a)和天山东段玛纳斯地区(6±3mm/a)的地壳缩短率,表明天山不同地段的地壳缩短率存在明显差异。  相似文献   

4.
中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究   总被引:45,自引:4,他引:45  
根据穿越天山地质剖面观察、系统裂变径迹(FT)测年年龄与热演化模拟结果分析,并综合前人研究结果,天山陆内造山带中、新生代主要经历2次明显的隆升事件,分别为晚侏罗世—早白垩世和中新世以来(25~0Ma)。从天山地区磷灰石FT年龄结果来看,主要记录了早期隆升年龄,但热演化模拟结果显示普遍经历了中新世以来的快速隆升。在天山北缘从盆山边缘的近25Ma开始隆升到前缘带的现今活动,表明天山陆内造山带在隆升的同时还逐渐“增生”扩展。系统研究和分析表明,东西准噶尔和阿尔泰地区则主要记录了晚中生代以来的持续隆升过程,新生代构造活动不明显或强度相对天山要弱。上述事实表明,天山及其中亚地区新生代的陆内活动是受喜马拉雅碰撞与青藏高原隆升的影响,具有向北渐弱的特征。  相似文献   

5.
Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22–20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.  相似文献   

6.
Across the extreme south of Patagonia, the Magallanes‐Fagnano Fault (MFF) accommodates the left‐lateral relative motion between South America and Scotia plates. In this paper, we present an updated view of the geometry of the eastern portion of the MFF outcropping in Tierra del Fuego. We subdivide the MFF in eight segments on the basis of their deformation styles, using field mapping and interpretation of high‐resolution imagery. We quantify coseismic ruptures of the strongest recorded 1949, Mw7.5 earthquake, and determine its eastern termination. We recognize several co‐seismic offsets in man‐made features showing a sinistral shift up to 6.5 m, greater than previously estimated. Using 10Be cosmogenic nuclides depth profiles, we date a cumulated offset in post‐glacial morphologies and estimate the long‐term slip rate of the eastern MFF. We quantify a 6.4 ± 0.9 mm/a left‐lateral fault slip rate, which overlaps geodetic velocity and suggests stable fault behaviour since Pleistocene.  相似文献   

7.
Multiple earthquakes produced by thrusting deformation have been recorded over the last century in the Tianshan area. Paleoseismic studies are very important in the exploration of the active quaternary tectonics and the risk assessment of great earthquakes in the Tianshan orogenic region. However, in this area, paleoseismic research is still lacking because of the lack of samples dated by 14C or optically stimulated luminescence (OSL) methods. We determined the ages of the alluvial fans by 10Be terrestrial cosmogenic nuclide (TCN) dating, measured the surface deformation of the fault scarp in a GPS survey, and evaluated the vertical displacements of the events in trenches in the east Kalpintage fault in the southwest Tianshan region. We estimated the displacement and recurrence intervals of the paleoseismic events and constrained the errors of the 10Be ages and slip rates using a Monte Carlo simulation method. Our study suggests that each paleoseismic event shows a similar displacement of ~1.5 m with a recurrence interval of ~5 kyr in the east Kalpintage fault. The calculated slip rate is 0.31(+0.21/?0.18) mm/yr. In such arid regions with large areas of coarse gravel that lack 14C or OSL samples, the integration of TCN dating, geomorphic deformation survey, and trenching methods is a reliable alternative for studying the active regional tectonics.  相似文献   

8.
乌鲁木齐山前坳陷逆断裂-褶皱带及其形成机制   总被引:66,自引:9,他引:57  
乌鲁木齐山前坳陷位于天山新生代再生造山带北侧,南以准噶尔南缘断裂与天山相隔,内部发育了几排逆断裂 背斜带,每一排构造带又由多个逆断裂 背斜组成。最南的齐古逆断裂 背斜带形成于中生代末,其北的玛纳斯逆断裂背斜带包含霍尔果斯、玛纳斯和吐谷鲁逆断裂背斜,形成于上新世末、早更新世初,受上、下2 个滑脱面和断坡的控制,形成上、下2 个背斜。再向北的独山子逆断裂背斜带由独山子、哈拉安德和安集海逆断裂背斜组成,形成于早、中更新世之间,主逆断裂向下在8 ~9 km 深处的侏罗系中变为近水平滑脱面。此外,在独山子和吐谷鲁背斜的西北和东北还分别发育有正在形成之中的西湖和呼图壁隆起。研究了这些逆断裂 背斜带的地表和深部的构造特征、二维和三维几何学及运动学后指出,它们是在天山向准噶尔盆地扩展过程中发育于近水平滑脱面和不同断坡上的断展褶皱,独山子和安集海逆断裂 背斜的水平缩短量分别为2 900 ,1 350 m ,缩短速率分别为397 ,187 m m/ a。霍尔果斯、玛纳斯、吐谷鲁逆断裂 背斜的水平缩短量分别为5 900 ,6 500 ,6 000 m ,相应的缩短速率分别为202,223 ,206 m m/a,准噶尔南缘断裂和乌鲁木齐山前坳陷第四纪?  相似文献   

9.
Understanding deformation associated with active thrust wedges is essential to evaluate seismic hazards. In this study, we investigate the spatial distribution, timing, and rates of deformation across the central Andean backarc of Argentina, where deformation and shortening have been assumed to occur within a narrow wedge‐front zone. The combined results of our geomorphic mapping, topographic surveying, and 10Be exposure dating demonstrate that fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone but also occurs in the Andean wedge interior. There, internal structures with deformation rates of ca. 1.3 mm/year have been active during the last ~140 ka. Widely distributed deformation implies that seismic hazards may have been underestimated in the internal part of the Andean orogen.  相似文献   

10.
天山北麓塔西河河流阶地的变形特征及成因探讨   总被引:3,自引:1,他引:3  
通过对穿过吐谷鲁背斜的塔西河变形阶地测量和年代学分析,计算出该背斜处地壳抬升速率在75~130ka间为1.70~3.24mm/a.12~13ka间增至12.25~8.16mm/a.全新世时则为2.25—2.57mm/a,明显具有脉动性的特点,其平均隆升速率为2.06~3.57mm/a.第四纪以来.构造活动及气候变化控制着河流下切和侧蚀作用的进行.因此塔西河阶地的形成和发育明显受第四纪以来构造活动和气候变化等因素的影响,具有多成因性和多层次性.是构造气候相互耦合作用的结果.  相似文献   

11.
The Waratah Fault is a northeast trending, high angle, reverse fault in the Late Paleozoic Lachlan Fold Belt at Cape Liptrap on the Southeastern Australian Coast. It is susceptible to reactivation in the modern intraplate stress field in Southeast Australia and exhibits Late Pliocene to Late Pleistocene reactivation. Radiocarbon, optically stimulated luminescence (OSL), and cosmogenic radionuclide (CRN) dating of marine terraces on Cape Liptrap are used to constrain rates of displacement across the reactivated Waratah Fault. Six marine terraces, numbered Qt6–Tt1 (youngest to oldest), are well developed at Cape Liptrap with altitudes ranging from ~1.5 m to ~170 m amsl, respectively. On the lowest terrace, Qt6, barnacles in wave-cut notches ~1.5 m amsl, yielded a radiocarbon age of 6090–5880 Cal BP, and reflect the local mid-Holocene sea level highstand. Qt5 yielded four OSL ages from scattered locations around the cape ranging from ~80 ka to ~130 ka. It formed during the Last Interglacial sea level highstand (MIS 5e) at ~125 ka. Inner edge elevations (approximate paleo high tide line) for Qt5 occur at distinctly different elevations on opposite sides of the Waratah Fault. Offsets of the inner edges across the fault range from 1.3 m to 5.1 m with displacement rates ranging from 0.01 mm/a to 0.04 mm/a. The most extensive terrace, Tt4, yielded four Early Pleistocene cosmogenic radionuclide (CRN) ages: two apparent burial ages of 0.858 Ma ± 0.16 Ma and 1.25 Ma ± 0.265 Ma, and two apparent exposure ages of 1.071 Ma ± 0.071 Ma (10Be) and 0.798 Ma ± 0.066 Ma (26Al). Allowing for muonic production effects from insufficient burial depths, the depth corrected CRN burial ages are 1.8 Ma ± 0.56 Ma and 2.52 Ma ± 0.88 Ma, or Late Pliocene. A Late Pliocene age is our preferred age. Offsets of Tt4 across the Waratah Fault range from a minimum of ~20 m for terrace surface treads to a maximum of ~70 m for terrace bedrock straths. Calculated displacement rates for Tt4 range from 0.01 mm/a to 0.04 mm/a (using a Late Pliocene age, ~2 Ma), identical to the rates calculated for the Last Interglacial terrace, Qt5. This indicates that deformation at Cape Liptrap has been ongoing at similar time-averaged rates at least since the Late Pliocene. The upper terraces in the sequence, Tt3 (~110 m amsl), Tt2 (~140 m) and Tt1 (~180 m) are undated, but most likely correlate to sea level highstands in the Neogene. Terraces Tt1–Tt4 show an increasing northward tilt with age.The Waratah Fault forms a prominent structural boundary in the Lachlan Fold Belt discernible from airborne magnetic and bouger gravity anomalies. Seismicity and deformation are episodic. Episodic movement on the Waratah Fault may be coincident with sea level highstands since the Late Pliocene, possibly from increased loading and elevated pore pressure within the fault zone. This suggests that intervals between major seismic events could be on the order of 100 ka.  相似文献   

12.
独山子背斜位于准噶尔盆地南缘西段,是北天山逆冲推覆带在前陆盆地山前形成的断层相关褶皱。本文以横跨背斜的过井地震剖面为蓝本,用钻井数据、相邻地震剖面和地表形态为约束,运用断层相关褶皱模型对独山子背斜进行几何学定量分析,以建立合理的与实际接近的构造模型; 提取构造特征参数进行基于Trishear模型的运动学定量模拟,选取与实际数据吻合度最高的构造形态为独山子背斜的最佳几何模型。模拟数据表明:独山子背斜为前翼呈三角剪切的断层传播褶皱; 背斜变形从喜马拉雅山晚期更新统(Q1-3)沉积期间开始形成并生长,平均推覆速率为0.18 mm/a; 全新统沉积期间(Q4)推覆活动强度达到最大值,平均推覆速率为 4.64 mm/a。形成独山子背斜所需的总推覆位移量为5 600 m左右,第四纪期间的平均推覆速率约为0.19 mm/a。  相似文献   

13.
The Kachchh region of Western India is a pericratonic basin experiencing periodic high magnitude earthquakes events. In 2001 a catastrophic seismic event occurred at Bhuj measuring Mw = 7.7. The epicenters of both the 1956 and 2001 earthquakes were along the Kachchh Mainland Fault (KMF), proximal to the eastern end of the Northern Hill Range (NHR). The latter is a topographic expression of an active fault related fold on the hanging wall, and is controlled by a south dipping blind thrust.The present study deals with the eastern sector of NHR and uses optical dating to reconstruct the chronology of tectonically caused incisions. Along the backlimb of the NHR, incision ages on, channel fills and valley fill terraces progressively decrease from  12 ka to 4.3 ka. This age progression along with geomorphic evidences (decrease in topographic relief, drainage capture and drainage migration across the fold nose) suggests an active vertical and lateral fold growth along the KMF. Optical ages suggest that during the Late Holocene, the average uplift rate along the eastern NHR was 10 ± 1 mm/a. Recent GPS based estimates on crustal shortening are  12 mm/a.The KMF and the South Wagad Fault (SWF) represent the bounding faults of a transtensional basin that formed during the initial rifting. This basin is termed as the Samakhiali basin. The compressive stresses on account of structural inversion from normal to reverse phase resulted in lobate-shaped anticlines along KMF and SWF zone. These anticlines subsequently coalesced and formed linked and overlap segments. The present study suggests that eastward lateral deformation across the eastern portion of KMF has continued and has now resulted in its interaction with a left step over transfer fault called the South Wagad Master Fault (SWMF). This implies an increasing transpersional deformation of the Samakhiali basin. We therefore, suggest that the eastward NHR ridge propagation along KMF resulted in the thrust faulting on the south dipping SWMF resulting in the Bhuj 2001 event. The increasing strain on this basin may cause enhanced seismicity in the future along the eastern KMF and Wagad region.  相似文献   

14.
Boulder Mountain, located in South Central Utah, is one of several mountain ranges on the Colorado Plateau that was glaciated during the late Pleistocene. Using 3He exposure-age dating (corrected for non-cosmogenic 3He with shielded samples), we determined 3He exposure-ages for boulders from the most well-preserved moraines in the Fish Creek drainage of Boulder Mountain. 3He exposure-ages indicate a last glacial maximum (LGM) advance ∼23,100 ± 1300 to 20,000 ± 1400 yr ago and a later and smaller advance ∼16,800 ± 500 to 15,200 ± 500 yr ago. This chronology is very similar to other cosmogenic glacial chronologies from the Western U.S. and suggests that the timing of glacial advance and retreat on the Colorado Plateau was generally in phase with the rest of the Western U.S. during the late Pleistocene.  相似文献   

15.
秋里塔格构造带位于库车褶皱冲断前缘,其东段包括东秋里塔格背斜和库车塔吾背斜。野外调查和地震剖面解释表明:秋里塔格构造带东段盐下发育断层转折褶皱; 盐上东秋里塔格背斜为滑脱箱状背斜,库车塔吾背斜核部为南倾逆冲断层所破坏。演化剖面显示秋里塔格构造带东段在侏罗纪断陷期发育了正断裂,其后为平静期,直到库车晚期后逆冲断层和褶皱快速发育,背斜最终形成。膏盐岩及古构造对构造变形具有重要影响,一方面作为滑脱层,分割了盐下层与盐上层,导致二者形成不同的构造样式; 另一方面塑性流动充填于背斜核部。由于膏盐岩的厚度差异,东秋里塔格背斜盐上发育褶皱,而库车塔吾背斜核部被逆冲断层破坏,膏盐层厚度还影响了膏盐层上下构造高点的相对位置。盐下构造的发育受侏罗纪古构造控制,进而影响了盐上构造的发育。  相似文献   

16.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

17.
Six petroleum source beds have been developed in the Kuche Depression (also known as “Kuqa Depression”) of the Tarim Basin, including three lacustrine source rocks (Middle and Upper Triassic Kelamayi and Huangshanjie formations, and Middle Jurassic Qiakemake Formation) and three coal measures (Upper Triassic Taliqike Formation, Lower Jurassic Yangxia Formation, and Middle Jurassic Kezilenuer Formation). While type I–II organic matter occurs in the Middle Jurassic Qiakemake Formation (J2q), other source beds contain dominantly type III organic matter. Gas generation rates and stable carbon isotopic kinetics of methane generation from representative source rocks collected in the Kuche Depression were measured and calculated using an on-line dry and open pyrolysis system. Combined with hydrocarbon generation history modelling, the formation and evolution processes of the Jurassic–Triassic highly efficient gas kitchens were established. High sedimentation rate in the Neogene and the fast deposition of the Kuche Formation within the Pliocene (5 Ma) in particular have led to the rapid increase in Mesozoic source rock maturity, resulting in significant dry gas generation. The extremely high gas generation rates from source kitchens have apparently expedited the formation of highly efficient gas accumulations in the Kuche Depression. Because different Mesozoic source rocks occur in different structural belts, the presence of both lacustrine and coaly gas kitchens during the Cenozoic time can be identified in the Kuche Depression. As shown by the chemical and stable carbon isotope compositions of the discovered gases, the formation of the giant gas pools in the Kela 2, Dina 2, Yaha and Wucan 1 have involved very different geological processes due to the difference in their gas source kitchens.  相似文献   

18.
《Quaternary Science Reviews》2003,22(5-7):437-444
A long-standing debate regarding the reconstruction of former ice sheets revolves around the use of relative weathering of landscapes, i.e., the assumption that highly weathered landscapes have not been recently glaciated. New cosmogenic isotope measurements from upland bedrock surfaces and erratics along the northeastern margin of the Laurentide Ice Sheet (LIS) shed light on this debate. 10Be and 26Al concentrations from three perched erratics, yielding cosmogenic exposure ages of 17–11 ka, are much lower than those measured in two unmodified, highly weathered tors upon which they lie, which yield cosmogenic exposure ages of >60 ka. These findings suggest that non-erosive ice covered weathered upland surfaces along the northeastern margin of the LIS during the last glacial maximum. These data challenge the use of relative weathering to define the margins of Pleistocene ice sheets. The juxtaposition of non-erosive ice over upland plateaus and erosive ice in adjacent fiords requires strong gradients in basal thermal regimes, suggestive of an ice-stream mode of glaciation.  相似文献   

19.
天山北缘河流阶地形成及构造变形定量分析   总被引:4,自引:1,他引:4  
新生代以来,北天山山前发育了3排冲断褶皱带。新生代晚期一系列河流普遍穿过这3排冲断褶皱带并发育了三级河流阶地。在最新构造活动的影响下,河流阶地普遍发生变形,遭受抬升。利用光释光及14C年代学方法确定了塔西河三级阶地的形成年龄,并实际测量了三级阶地的高程。结果表明吐谷鲁背斜的构造抬升速率在32.85-28.75 ka问为9.50-12.57 mm/a,12-13 ka间为9.67-14.5 mm/a,全新世则增至10.79-23.44mm/a,天山基底的平均隆升速率达到3.39-3.86mm/a。通过对天山最高一级夷平面、野外实测侏罗纪地层高程及天山发育的煤层的相对隆升速率的研究则表明天山自24 Ma以来平均的隆升速率约为0.085-0.146 mm/a。结合对北天山其他主要河流阶地的观察及研究可以看出自晚更新世一全新世以来,天山北缘的最新构造活动具有不断加快的特征。  相似文献   

20.
GPS-derived deformation rates in northwestern Himalaya and Ladakh   总被引:1,自引:0,他引:1  
Deformation rates derived from GPS measurements made at two continuously operating stations at Leh (34.1°N, 77.6°E) and Hanle (32.7°N, 78.9°E), and eight campaign sites in the trans-Himalayan Ladakh spanning 11 years (1997–2008), provide a clear picture of the kinematics of this region as well as the convergence rate across northwestern Himalaya. All the Ladakh sites move 32–34 mm/year NE in the ITRF2005 reference frame, and their relative velocities are 13–16 mm/year SW in the Indian reference frame and ~19 mm/year W with reference to the Lhasa IGS station in southeastern Tibet. The results indicate that there is no statistically significant deformation in the 200-km stretch between the continuous sites Leh and Hanle as well as between Leh and Nubra valley sites along the Karakoram fault, whereas the sites in and around the splayed Karakoram fault region indicate surface deformation of 2.5 mm/year. Campaign sites along the Karakoram fault zone indicate a fault parallel surface motion of 1.4–2.5 mm/year in the Tangste and western Panamik segment of the Karakoram fault, which quantifies the best possible GPS-derived dextral slip rate of 3 mm/year along this fault during this 11-year period. Baselines of Ladakh sites show convergence rates of 15–18 mm/year with respect to south India and 12–15 mm/year with respect to Delhi in north India and Almora in the Himalaya ~400 km north-northeast of Delhi. These constitute an arc normal convergence of 12–15 mm/year across the western Himalaya, which is consistent with arc normal convergence all along the Himalayan arc from west to east. Baseline extension rates of 14–16 mm/year between Lhasa and Ladakh sites are consistent with the east–west extension rate of Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号