首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以风火山流域某阴坡坡顶、 坡底和阳坡坡底活动层土壤水热及气象资料为基础, 对青藏高原多年冻土区不同地形条件下的土壤水热时空变化特征进行了分析。结果表明: 在融化阶段, 除表层5 cm外, 阴坡坡底各深度土壤开始融化日期均比坡顶早, 比阳坡坡底晚; 阴坡坡脚各深度土壤含水量均大于坡顶和阳坡坡底。在冻结阶段, 开始冻结日期在阴坡坡底均比坡顶早, 但比阳坡坡底晚; 阴坡坡底各深度土壤含水量均高于坡顶相应土层的含水量, 在20 cm、 100 cm、 160 cm深处高于阳坡相应土层的含水量, 但在5 cm、 50 cm深处, 稳定冻结后两者的含水量差异较小。在整个冻融过程中, 阴坡坡底土壤温度对气温变化的响应弱于坡顶及阳坡坡底, 但其土壤水分对降水的响应强于坡顶及阳坡坡底。植被生长发育受水分和热量条件的制约, 不同地形条件下水热时空变化差异将影响植被空间分布特征。在未来气候变暖情况下, 上坡位植被可能因为水分胁迫而退化, 出现荒漠化现象, 而下坡位由于受侧向流的影响, 土壤水分对降水的响应强烈, 植被不会发生显著退化; 在不同坡向之间, 同一坡位阳坡植被退化程度可能大于阴坡。  相似文献   

2.
青藏高原多年冻土区高寒草甸土壤水分入渗变化研究   总被引:4,自引:3,他引:1  
在多年冻土区典型坡面上,将坡面划分为坡下(L)、坡中(M)和坡顶(H)三个坡位,每个坡位上各选取92%、60%和30%植被盖度为研究对象,用双环入渗仪测定土壤水分入渗过程,对影响土壤入渗过程的环境因子进行了分析,并基于土壤物理特性及土壤水分的测定进行模型模拟。结果表明:研究区不同植被盖度下土壤水分入渗性能在活动层冻融过程中差异明显,初始含水量和初始入渗率具有较好的负相关关系;稳定入渗率大小为:活动层融化期,92%(0.61 mm·min-1) > 60%(0.50 mm·min-1) > 30%(0.29 mm·min-1);活动层开始冻结期,60%(0.56 mm·min-1) > 30%(0.39 mm·min-1) > 92%(0.26 mm·min-1)。土壤水分入渗速率具有显著的坡位差异并与冻土的冻融循环过程关系紧密。主要表现为,稳定入渗速率随坡位高度的降低依次递减;同一坡位下,开始冻结期入渗速率小于融化期。在整个入渗阶段,坡顶的累积入渗量是最大的,体现了较好的入渗性能。影响高寒草甸土壤水分入渗的环境因子主要有容重,有机质含量及粒径<0.1 mm微粒。通过比较研究得出,在长江源地区,活动层融化期通用经验模型ft)=a+bt-n更适用于该研究区域高寒草甸土壤水分入渗过程的研究,而在开始冻结期Horton模型ft)=ic+(i0-ice-kt则具有更好的适用性。  相似文献   

3.
为从整体上认识多年冻土流域水循环过程基本规律及其对下垫面条件变化响应,以长江源区风火山小流域为例,基于2016—2019年的水文气象要素的野外观测与计算,分析了坡面尺度上水分入渗、蒸散发、活动层内部水热条件以及冻结层上地下水等关键水循环过程的变化特征及其对下垫面条件变化的响应。研究结果表明:①风火山小流域生长季实际蒸散发的多年平均值为472.1±42.9 mm,实际蒸散发的气象影响因子排序为:净辐射(敏感系数SRn =1.22,相关系数R=0.93)>气温(STa =0.33,R=0.84)>相对湿度(SHR=0.32,R=0.46)>风速(SU =-0.25,R=-0.27),坡面尺度上实际蒸散发与植被覆盖度以及海拔高度正相关;②初始和稳定入渗速率均随坡位的升高而增大,对于稳定入渗率,初始融化期、完全融化期和初始冻结期,坡顶(1.07 mm/min、0.63 mm/min、0.88 mm/min)>坡中(0.29 mm/min、0.45 mm/min、0.21 mm/min)>坡底(0.11 mm/min、0.30 mm/min、0.10 mm/min),而植被覆盖度对入渗速率的影响在不同冻融阶段表现出差异;③阴、阳坡面和不同坡位冻融起始时间差异体现在土壤水分、地下水位变化上,解释了多年冻土流域产流区从阳坡发展至阴坡,从低海拔发展至高海拔的时空差异原因;④ 50 cm深度以下的活动层冻融状况显著影响着地下水位动态,地形、植被和土壤质地差异对热量传输的影响共同导致了坡面尺度上冻结层上地下水动态的空间差异性。  相似文献   

4.
青藏高原海拔高,太阳辐射强,坡向效应显著.其中阴阳坡效应不仅导致多年冻土空间分布格局的差异性,也严重影响了冻土路基工程稳定性.目前虽有大量关于阴阳坡热效应的研究,但定量化和多因素耦合作用的研究,特别是场地内多次重复测量的定量评估研究仍不多见.通过对青藏高原多年冻土区北麓河盆地两个具有相反坡向研究场近4年(2016年9月至2020年5月)近地表温湿度、辐射和风速等野外多重观测资料的分析,研究了高海拔多年冻土区阴阳坡效应对近地表水热及能量平衡的影响.结果表明:在坡向的长期影响下,阴阳坡下垫面性质(辐射、温湿度和土壤质地等)存在较大的差异.其中,阳坡土质相对粗糙,不利于水分的保持,阴坡反之.0.05m深度阳坡(朝南坡向)的日冻融循环次数明显高于阴坡(朝北坡向)o2016-2019年阳坡和阴坡的日冻融循环总次数分别为368和109次,差异非常明显.阳坡各深度土壤温度均显著大于阴坡,温差约1.4℃.浅层地温对地表热量变化的响应速率较快,但随深度的增加阴坡地温的响应速率逐渐滞后于阳坡,且这一现象在融化阶段更为显著.融化阶段,阳坡水分的变化速率较快,随深度的变幅较大,但土壤含水量却明显低于阴坡.地表性质差异如温湿度、反照率和风速等控制着地表能量的交换过程,致使阳坡土壤热通量和短波辐射均大于阴坡.研究对深入理解高海拔、坡地多年冻土区气候—冻土关系及多年冻土模拟边界条件优化具有重要意义.  相似文献   

5.
青藏高原多年冻土区活动层土壤入渗特征及机理分析   总被引:1,自引:0,他引:1  
青藏高原多年冻土区活动层土壤的入渗规律研究是高寒区土壤水循环过程研究的主要内容。以青藏高原多年冻土区高寒沼泽草甸、高寒草甸和高寒草原的活动层土壤为研究对象,裸地为参照对象,分析了不同植被类型土壤的入渗规律及其主要影响因子。结果表明:不同植被类型土壤的入渗能力排序为高寒草原>裸地>高寒草甸>高寒沼泽草甸。高寒草甸土壤中致密的根系对土壤水分的运移具有强烈的阻滞作用,降低了土壤的入渗性能,而高寒草原土壤层根系较为稀疏,对土壤入渗的阻滞作用较弱,土壤水分向深层的渗漏速率较大。通过对比4种土壤入渗模型的模拟结果,发现Horton模型更适用于描述高寒草地土壤水分的入渗过程。另外,不同入渗模型对裸地入渗过程的模拟均优于其他植被类型草地,说明植被类型及植物的生长状况影响土壤入渗过程的模拟效果。全球变暖条件下,多年冻土区土壤入渗研究将为青藏高原多年冻土区陆地水文过程模型提供参数支持,为未来水资源变化研究提供基础数据。  相似文献   

6.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:6,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   

7.
为从整体上认识多年冻土活动层土壤水文过程季节变异特性,以黄河源区巴颜喀拉山北坡冻土剖面为例,结合大气降水、冻土土壤水分、冻土层上水的野外观测,采用HYDRUS-1D软件冻融模块进行模拟分析,分析冻融作用对活动层土壤水文过程的影响,研究结果表明:(1)冻土层上水位与土壤水热之间存在着相互影响、相互作用的关系,依据活动层土壤温度变化,基于冻融过程,多年冻土活动层土壤水分与冻土层上水位可划分为冻结稳定、快速融化、融化稳定和快速冻结4个阶段。(2)降雨入渗是坡面尺度下活动层土壤水文过程的主要驱动力,活动层冻融锋面是主要限制性因素,受冻融过程影响,冻结期降雨减少,土壤冻结,土壤储水能力下降,土壤水分下渗停止,坡面侧向流动减弱,土壤水分和冻土层上水位处于下降趋势;融化期降雨增多,土壤融化,土壤储水能力上升,土壤水分下渗强烈,坡面侧向流动增强,土壤水分和冻土层上水位处于上升趋势。(3)受坡面地形影响,上坡活动层厚度大于下坡,上坡冻融锋面变化较下坡平缓,上坡土壤水分和冻土层上水位的变化幅度相对下坡较为平缓,而上坡土壤水分相对下坡含量较低,下坡冻土层上水位相对稳定。  相似文献   

8.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:14,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

9.
刘广岳  谢昌卫  杨淑华 《冰川冻土》2018,40(6):1067-1078
多年冻土区活动层冻融格局对气候系统、能量平衡、水文过程和生态系统有重要的影响,地表冻融时间是反映冻融格局时空变化的重要指标。为了探明多年冻土区活动层起始冻融时间的影响因素和机制,通过对青藏公路沿线8个典型活动层观测场地表起始融化时间(OOT)和起始冻结时间(OOF)进行研究,分析了不同观测场起始冻融时间的时空差异及其影响因素。结果表明:(1)青藏高原多年冻土区活动层起始融化主要发生在4月中下旬,起始冻结主要发生在10月中下旬。OOT的年际变化幅度远大于OOF,每年起始冻结的发生较起始融化更为准时。(2)起始融化发生时的气温普遍比起始冻结发生时高1~4℃。气温对OOT的影响要比对OOF大,其中OOT的变化主要与春季气温有关,冬季气温对其影响不大。(3)植被和土壤水分对OOT和OOF有重要调节作用,土壤含水率越高,植被状况越好,起始融化和冻结的发生时间往往越迟。(4)在起始融化和冻结阶段,厚度较大和持续时间较长的积雪对地温变化有明显的抑制作用,对OOT和OOF有延迟作用。  相似文献   

10.
不同植被盖度变化下活动层水热过程是多年冻土区水能循环中一个重要的不确定因素.为了研究植被盖度变化对活动层水热过程的影响,在青藏高原多年冻土区,选择坡向、坡型和坡度趋于一致植被覆盖度分别为92%、65%、30%的坡面建立天然径流观测场,觎测多年冻土活动层中的地温和水分状况.结果表明:活动层开始冻结和消融时间随着植被盖度的减少不断提前,且冻结持续时间缩短;随着植被盖度减小,活动层地温水分变化速率增大,植被起到抑制土壤地温水分变化速率的作用;植被盖度对夏季融化过程和秋季冻结过程活动层地温和水分的影响明显大于冬季降温和春季升温过程,对融化过程的影响较冻结过程更明显.  相似文献   

11.
多年冻土区铁路路基导热系数监测与分析   总被引:1,自引:1,他引:0  
为分析冻融过程、 道砟覆盖及降雨对多年冻土区铁路路基土体导热系数的影响, 对青藏高原多年冻土区铁路路基试验段和天然地表土体开展导热系数、 温度、 水分原位监测。结果表明: 融化期导热系数波动均明显大于冻结期, 天然场地导热系数在冻结期大于融化期, 而无道砟覆盖路基土体和道砟覆盖路基土体的导热系数在冻结期小于融化期, 与通常的认知和温度场模拟取值相反; 道砟层的保温和阻水效应导致道砟覆盖路基土体含水量和导热系数均小于无道砟覆盖路基土体, 冻结期路基土体导热系数有减小趋势, 道砟覆盖路基土体尤为显著; 降雨入渗增大土体导热系数, 低含水量的道砟覆盖路基土体导热系数对降雨的响应最强烈。寒区路基工程数值模拟时, 应考虑水热变化对导热系数的影响, 不宜采用固定相变区间的分段函数或阶跃函数预估导热系数。  相似文献   

12.
活动层含水量是表征多年冻土区气候、水文和生态过程的关键参数。长期以来,由于受多年冻土区活动层水分实测样点数量稀少的限制,各类基于遥感反演、模式模拟乃至数据融合和同化等手段生产的土壤水分空间数据均存在着较大的误差。2020年10—11月在青藏高原腹地(沱沱河源区)测定了 1 072组活动层土壤含水量数据并进行分析,探讨了该时段该区域活动层土壤水分的空间差异,并与全球陆面数据同化系统数据产品(GLDAS-Noah)和欧洲中期天气预报中心发布的第五代再分析资料(ERA5-Land)进行了对比分析。结果表明,在该区域平均厚度为2.72 m的活动层内,土壤质量含水量(总含水量)约为14.0%,活动层土壤含水量与植被发育情况存在正相关关系。除高寒沼泽草甸类型外,高寒草甸与高寒草原类型的活动层含水量随深度的增加呈现出先减小后增大的变化趋势。不同坡位类型的活动层含水量呈上坡位>下坡位>中坡位>平坡位,阳坡水分高于阴坡且两者活动层剖面水分变化相似。多年冻土区浅表层0~350 cm深度范围内的土壤含水量大于区内融区同深度的土壤含水量,两者土壤剖面水分分布均呈现出先增大后减小再增大的特征。该区域的GLDAS-Noah同化水分产品与实测数据对比的误差在10%以内,比ERA5-Land再分析土壤水分数据更为准确,但两种数据产品对土壤剖面上的水分垂直分布情况描述均与实测数据有较大差异。该研究结果可以为数据同化系统的模式冻融参数化方案优化及遥感水分产品研发提供科学依据。  相似文献   

13.
上方来水对坡面降雨入渗及土壤水分再分布的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
在防止土壤侵蚀和雨后抑制蒸发的条件下,利用室内模拟降雨试验,研究了上方来水对坡面降雨入渗、湿润锋运移以及土壤水分再分布的影响。结果表明:对于初始含水量很低的土壤,与上方无来水相比,上方来水时降雨入渗过程中入渗率有一个上升的阶段,但平均入渗率反而降低;在降雨入渗初期,由于上方来水的沿程入渗,上方来水对坡面湿润锋运移的影响较大,但随后几乎没有影响,湿润锋的运移主要与基质势梯度有关;土壤水分沿坡面呈"波浪形"分布是坡面径流的波动性、上方来水(径流)的沿程入渗以及侧向沿坡向下流等综合作用的结果。  相似文献   

14.
青藏高原多年冻土区冻融循环过程对地表能量及其分配的影响研究相对较少,青藏高原唐古拉站多年冻土的实测资料,依据10 cm土壤温度划分浅层土壤冻融循环的各个阶段并结合能量闭合率、地表能量各通量等数据探讨浅层土壤冻融循环过程与地气间水热交换过程之间的影响。结果表明:浅层土壤冻融循环过程各阶段均受气候变化的影响,其融化过程起始时间提前同时冻结过程起始时间推后,完全融化阶段持续时间增加,且逐渐接近完全冻结阶段持续时间;在浅层土壤不同冻融状态下,能量闭合率差值较大,其中完全融化阶段能量闭合状况普遍好于完全冻结阶段;净辐射值在完全融化阶段高于完全冻结阶段,净辐射在完全冻结阶段主要转化为感热通量,在完全融化阶段主要转化为潜热通量,地表土壤热通量在完全融化阶段为正值,在完全冻结阶段为负值。  相似文献   

15.
对青藏高原高寒草甸30%、60%和93%三种覆盖度下,多年冻土活动层的土壤水分随季节变化的观测研究,结果表明:多年冻土活动层土壤水分分布对植被覆盖变化响应强烈.年内不同时期,植被覆盖度为65%和30%的土壤表层20cm深度内水分含量及分布相似,每次降水后30%覆盖度土壤水分的变率略大于65%覆盖度的;而93%覆盖度土壤水分在年内解冻开始到冻结前均小于前两种覆盖类型;植被覆盖度越小,土壤冻结和融化响应时间越早,响应历时也越短;浅层土壤冻结和融化对植被覆盖度的响应程度较强,接近深层土壤冻结和融化对植被覆盖度的响应程度降低.覆盖度为30%和65%土壤水分在整个冻结过程的减少幅度比93%覆盖度土壤大10%~26%,而融化期水分增加幅度更大为1.5%~80%;土壤冻融的相变水量对植被覆盖度变化响应明显,植被覆盖度降低,土壤冻结和融化相变水量增大.由于受植被蒸腾与地表蒸散发和土壤温度梯度的影响,融化期土壤剖面的水分重新分配,总体上呈现水分向剖面上部和底部迁移,剖面中部60~80cm深度左右的土壤出现"干层".  相似文献   

16.
多年冻土区活动层是地表水和地下水相互转化中十分重要的交换通道,活动层土壤含水量是多年冻土区水文循环中重要的组成部分,其动态变化与寒区生态环境密切相关。在气候变化背景下,深入了解活动层土壤含水量的动态变化特征具有重要意义。本文利用ELM(Extreme Learning Machine)模型对青藏高原腹地不同海拔高度多年冻土区土壤含水量进行模拟分析,结果表明:与BP神经网络模型相比,二输入变量ELM模型的模拟精度更高;ELM模型模拟后1天土壤含水量的NSE值在0.69~0.87之间,其中坡下20 cm深度处模拟NSE取得最大值(0.87),并且模拟精度随着推后时间的增加有所提升,模拟后3天和后7天的NSE值分别在0.76~0.92和0.75~0.93之间;坡下各深度含水量的模拟效果优于坡上。在此基础上,通过设置不同的气候变化情景,研究土壤含水量在气候变化背景下的动态变化规律及响应特征。研究发现,升温导致冻结初期以及融化初期不同深度的土壤含水量均出现增大的趋势,在完全冻结期和完全融化期变化不明显。且随着气温增幅的加大,冻结初期以及融化初期的土壤含水量变化也逐渐增大,深层土壤含水量较浅层土壤含水量的增加更加显著。在降水增加的情景下,降水增加越大,土壤含水量的增加趋势越明显,但整体变化幅度较小;坡上各深度土壤含水量的增加主要发生在融化初期和完全融化期,坡下则主要集中在融化初期,相比于深层土壤,浅层土壤对降水增加的响应更加强烈。  相似文献   

17.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

18.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:8,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

19.
基于CoupModel的青藏高原多年冻土区土壤水热过程模拟   总被引:6,自引:5,他引:1  
张伟  王根绪  周剑  刘光生  王一博 《冰川冻土》2012,34(5):1099-1109
近年来, 青藏高原多年冻土区生态环境呈现出逐年恶化趋势, 从而对多年冻土活动层水热过程造成显著影响. 此外, 如何构建更加有效、 针对寒区的陆面过程模式成为寒区研究的重点、 热点之一. 作为一种有效的参数估计方法, Bayes参数估计算法具有准确估计陆面过程模式参数的能力. 因此, 基于2005-2008年观测数据, 利用CoupModel模型对青藏高原风火山流域土壤水热运移过程进行模拟; 同时, 利用Bayes参数估计方法估计部分水热运移参数. 结果显示: 模型对土壤温度(ST)的模拟效果较好, NSE系数均在0.90以上; 也能够较好模拟浅层(0~40 cm)土壤水分, NSE值均达到0.80以上, 而对40 cm以下土壤水分的模拟结果较差. 模型也能够较准确模拟活动层土壤的冻结-融化过程. 模型对温度水分极值和40 cm深度以下水分的模拟存在一些偏差. 值得一提的是, 基于重要性采样MCMC方案的Bayes参数估计算法能够有效估计水热运移参数, 模型模拟结果得到极大的改进. Bayes算法能够广泛解决陆面过程模式参数估计问题.  相似文献   

20.
多年冻土区活动层土壤水分对不同高寒生态系统的响应   总被引:2,自引:0,他引:2  
土地覆被变化对土壤水分的影响是生态水文学和流域水文学研究的关键问题,基于长江源典型多年冻土区不同高寒草地土壤水分的观测,结合降水、生物量(包括地上和地下)和土壤理化性质,研究了活动层土壤水分变化对不同高寒生态系统的响应. 结果表明:高寒草甸生物量、土壤养分含量均比高寒草原高,且对降水响应更为强烈,致使高寒草甸土壤水分变异性弱于高寒草原. 在土壤完全融化阶段,高寒草甸土壤活动层存在一个低含水层(50 cm左右)和两个相对高含水层(20 cm和120 cm),但高寒草原土壤水分在活动层剖面上有随深度逐渐增大的一致性趋势;在秋季冻结过程中,高寒草甸土冻结起始日滞后于高寒草原土3~15 d;在春季融化阶段,高寒草原土更高的含冰量需要更多的融化潜热. 此外,表层土壤中(0~20 cm),高寒草甸土比高寒草原土有更大的持水特性,而在活动层中下部则呈现完全相反的结果,不同高寒生态系统的演替改变了土壤的水热迁移过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号