首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Groundwater recharge is an important process for the management of both surface and subsurface water resources. The present study utilizes the application of analytical hierarchical process (AHP) on geospatial analysis for the exploration of potential zones for artificial groundwater recharge along Vaigai upper basin in the Theni district, Tamil Nadu, India. The morphology of earth surface features such as geology, geomorphology, soil types, land use and land cover, drainage, lineament, and aquifers influence the groundwater recharge in either direct or indirect way. These thematic layers are extracted from Landsat ETM+ image, topographical map, and other collateral data sources. In this study, the multilayers were weighed accordingly to the magnitude of groundwater recharge potential. The AHP technique is a pair-wise matrix analytical method was used to calculate the geometric mean and normalized weight of individual parameters. Further, the normalized weighted layers are mathematically overlaid for preparation of groundwater recharge potential zone map. The results revealed that 21.8 km2 of the total area are identified as high potential for groundwater recharge. The gentle slope areas in middle-east and central part have been moderately potential for groundwater recharge. Hilly terrains in south are considered as unsuitable zone for groundwater recharge processes.  相似文献   

2.
Mapping of hard rock aquifer system and artificial recharge zonation were carried out in an area of 325 km2 in parts of the Perambalur District, Tamil Nadu, India. This district has been declared as one of the over-exploited regions in Tamil Nadu by the Central Groundwater Board. To raise the groundwater level, suitable recharge zones were identified and artificial recharge structures are suggested using geomatics technology in the present study. To this end, various thematic maps concerning lithology, soil, geomorphology, land use, land cover, slope, lineament, lineament density, drainage, drainage density and groundwater depth level were prepared. Fissile hornblende gneiss (244 km2) covered most of the study area followed by charnockites (68 km2). Structural hills and rocky pediments characterize the major geomorphological features in the targeted area, and are followed by deep moderated pediments. The area is mostly used as crop and fallow land, followed by scrub land and deciduous forest. In the study area, the slopes are predominantly very gentle (142 km2) and nearly level (66 km2) ones. Besides, Groundwater level data of 58 wells have been generated, in which the minimum and maximum depth were 3 and 28 m respectively. Integration under the GIS environment has been carried out using all the thematic layers to identify the groundwater prospect zone through the introduction of weight and rank methods. Integrated output performances were classified into very poor, poor, moderate, good and excellent categories. All these classes were further divided into two groups as suitable and non-suitable area for the selection of recharge sites. Hard rock fractures were mapped as lineaments from satellite images, and besides that, rose diagram was also generated to find out the trend of the fracture. Furthermore, fracture data of 146 numbers have been collected using Brunton compass to generate rose diagram and were correlated with the rose diagram derived from lineaments. The present study significantly brought up a few areas such as Ammapalayam, Melapuliyur, Senjeri and around Siruvachur for artificial recharge.  相似文献   

3.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

4.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

5.
Mapping of hard rock aquifer system and artificial recharge zonation were carried out in an area of 325 km^2 in parts of the Perambalur District,Tamil Nadu,India.This district has been declared as one of the over-exploited regions in Tamil Nadu by the Central Groundwater Board.To raise the groundwater level,suitable recharge zones were identified and artificial recharge structures are suggested using geomatics technology in the present study.To this end,various thematic maps concerning lithology,soil,geomorphology,land use,land cover,slope,lineament,lineament density,drainage,drainage density and groundwater depth level were prepared.Fissile hornblende gneiss(244 km^2)covered most of the study area followed by charnockites(68 km^2).Structural hills and rocky pediments characterize the major geomorphological features in the targeted area,and are followed by deep moderated pediments.The area is mostly used as crop and fallow land,followed by scrub land and deciduous forest.In the study area,the slopes are predominantly very gentle(142 km^2)and nearly level(66 km^2)ones.Besides,Groundwater level data of 58 wells have been generated,in which the minimum and maximum depth were 3 and 28 m respectively.Integration under the GIS environment has been carried out using all the thematic layers to identify the groundwater prospect zone through the introduction of weight and rank methods.Integrated output performances were classified into very poor,poor,moderate,good and excellent categories.All these classes were further divided into two groups as suitable and non-suitable area for the selection of recharge sites.Hard rock fractures were mapped as lineaments from satellite images,and besides that,rose diagram was also generated to find out the trend of the fracture.Furthermore,fracture data of 146 numbers have been collected using Brunton compass to generate rose diagram and were correlated with the rose diagram derived from lineaments.The present study significantly brought up a few areas such as Ammapalayam,Melapuliyur,Senjeri and around Siruvachur for artificial recharge.  相似文献   

6.
The temporal and spatial distributions of precipitation are extremely uneven; so, careful management of water resources in Taiwan is crucial. The long-term overexploitation of groundwater resources poses a challenge to water resource management in Taiwan. However, assessing groundwater resources in mountainous basins is challenging due to limited information. In this study, a geographic information system (GIS) and stable base-flow (SBF) techniques were used to assess the characteristics of groundwater recharge considering the Wu River watershed in central Taiwan as a study area. First, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge were obtained from aerial photos, geological maps, a land use database, and field verification. Second, the SBF was used to estimate the groundwater recharge in a mountainous basin scale. The concept of the SBF technique was to separate the base-flow from the total streamflow discharge in order to obtain a measure of groundwater recharge. The SBF technique has the advantage of integrating groundwater recharge across an entire basin without complex hydro-geologic modelling and detailed knowledge of the soil characteristics. In this study, our approach for estimating recharge provides not only an estimate of how much water becomes groundwater, but also explains the characteristics of a potential groundwater recharge zone.  相似文献   

7.
Soil conservation measures undertaken to address land degradation can alter the hydrologic cycle by changing partitioning of water fluxes at the land surface. While effects on runoff are well documented, impacts of soil conservation activities on fluxes to groundwater are poorly understood. The goal of this study was to examine fluxes to groundwater in a semi-arid area of China’s Loess Plateau that has been subject to extensive soil conservation activities. Unsaturated zone pore-water pressures and concentrations of chloride show that impacts on deep drainage differ between ecological and structural soil conservation approaches. High matric potentials and low chloride beneath cultivated terrace and gulley sites are consistent with deep drainage occurring at these sites. Estimated recharge rates for dryland cultivated upland sites were approximately 55??0?mm/year (11??8% of mean annual rainfall) based upon chloride mass balance. In contrast, results suggest that mature tree and shrub plantations prevent deep drainage. Stable isotope signatures of unsaturated-zone moisture and groundwater indicate that focused infiltration through gullies and other topographic lows is likely to be the primary recharge mechanism. The results of this study highlight the potential for inadvertent effects of some soil conservation approaches on regional water resources.  相似文献   

8.
The sustainable development and management of groundwater resource needs quantitative assessment, based on scientific principle and recent techniques. In the present study, groundwater potential zone is being determined using remote sensing, Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) techniques using various thematic layers viz. geomorphology, geology, drainage density, slope, rainfall, soil texture, groundwater depth, soil depth, lineament and land use/ land cover. The Analytic Hierarchy Approach (AHP) is used to determine the weights of various themes for identifying the groundwater potential zone based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence. Finally, obtained groundwater potential zones were classified into five categories, viz. low, medium, medium-high, high and very high potential zone. The result depicts the groundwater potential zone in the study area and found to be helpful in better development and management planning of groundwater resource.  相似文献   

9.
Demand for irrigation water increases day by day along with meteorological vagaries and extension of irrigated area in the drought-prone Barind area of Bangladesh. This increasing stress on water resource is gradually making the area water scare. The study is aimed at studying the morphometric parameters of the Atrai-Sib river basin in the Barind area and on their relevance in water resource management based on satellite images and SRTM DEM. Computation and delineation of linear and areal aspects of the river basin and its morphometric components reveals that stream order ranges from first to eighth order showing dendritic drainage pattern. The basin represents homogeneity of soil texture; possibility of flash flood after heavy rainfall with low discharge of runoff; and is not largely affected by structural disturbance. Moderate drainage density of the river basin area indicates semipermeable soil lithology with moderate vegetation. Mean bifurcation ratio of the basin is calculated as 3.92 and elongation ratio 0.75, which indicate elongated shape of the river basin with low to moderate relief bounded in the east and west by ‘moderate to steep’ sloping land area. It reveals a flatter peak of runoff flow for longer duration and gravity flow of water. The gentle but undulating slope of the basin represents ‘excellent’ category for groundwater management as the site is favorable for infiltration due to maximum time of runoff water percolation. The east facing slopes of the basin show higher moisture content and higher vegetation than the west-facing slope. The land use pattern of the area shows that major part (95.29%) comes under the cultivated land which will support future river basin development and management. Results obtained from the study would be useful in categorization of river basins for future water resource development and management, and selection of suitable sites for water conservation structures such as check dam, percolation tank, artificial recharge of groundwater through MAR technique etc.  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987115000390   总被引:2,自引:1,他引:1  
The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources.Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area.  相似文献   

11.
Maps showing the potential for soil erosion at 1:100,000 scale are produced in a study area within Lebanon that can be used for evaluating erosion of Mediterranean karstic terrain with two different sets of impact factors built into an erosion model. The first set of factors is: soil erodibility, morphology, land cover/use and rainfall erosivity. The second is obtained by the first adding a fifth factor, rock infiltration. High infiltration can reflect high recharge, therefore decreasing the potential of surface runoff and hence the quantity of transported materials. Infiltration is derived as a function of lithology, lineament density, karstification and drainage density, all of which can be easily extracted from satellite imagery. The influence of these factors is assessed by a weight/rate approach sharing similarities between quantitative and qualitative methods and depending on pair-wise comparison matrix.The main outcome was the production of factorial maps and erosion susceptibility maps (scale 1:100,000). Spatial and attribute comparison of erosion maps indicates that the model that includes a measure of rock infiltration better represents erosion potential. Field investigation of rills and gullies shows 87.5% precision of the model with rock infiltration. This is 17.5% greater than the precision of the model without rock infiltration. These results indicate the necessity and importance of integrating information on infiltration of rock outcrops to assess soil erosion in Mediterranean karst landscapes.  相似文献   

12.
Groundwater is a dynamic and replenishable natural resource. The numerical modeling techniques serve as a tool to assess the effect of artificial recharge from the water conservation structures and its response with the aquifers under different recharge conditions. The objective of the present study is to identify the suitable sites for artificial recharge structures to augment groundwater resources and assess its performance through the integrated approach of Geographic Information System (GIS) and numerical groundwater modeling techniques using MODFLOW software for the watershed located in the Kodaganar river basin, Dindigul district, Tamil Nadu. Thematic layers such as geology, geomorphology, soil, runoff, land use and slope were integrated to prepare the groundwater prospect and recharge site map. These potential zones were categorized as good (23%), moderate (54%), and poor (23%) zones with respect to the assigned weightage of different thematic layers. The major artificial recharge structures like percolation ponds and check dams were recommended based on the drainage morphology in the watershed. Finally, a threelayer groundwater flow model was developed. The model was calibrated in two stages, which involved steady and transient state condition. The transient calibration was carried out for the time period from January 1989 to December 2008. The groundwater model was validated after model calibration. The prediction scenario was carried out after the transient calibration for the time period of year up to 2013. The results show that there is 15 to 38% increase in groundwater quantity due to artificial recharge. The present study is useful to assess the effect of artificial recharge from the proposed artificial structures by integrating GIS and groundwater model together to arrive at reasonable results.  相似文献   

13.
Groundwater is the most important source of water in meeting irrigation, drinking, and other needs in India. The assessment of the potential zone for its recharge is critical for sustainable usage, quality management, and food security. This study reports alternative mapping of the groundwater recharge potential of a selected block by including large-scale soil data. Thematic layers of soil, geomorphology, slope, land use land cover, topographical wetness index, and drainage density of Darwha block (District Yavatmal, Maharashtra, India) were generated and integrated in a geographic information system environment. The topographic maps, thematic maps, field data, and satellite image were processed, classified, and weighted using analytical hierarchical process for their contribution to groundwater recharge. The layers were integrated by weighted linear combination method in the GIS environment to generate four groundwater potential zones viz., “poor,” “poor to moderate,” “moderate to high,” and “high.” Based on the generated groundwater potential map, about 9830 ha (12%) of the study area was categorized as high potential for recharge, 25,558 ha (31%) as poor to moderate, 33,398 ha (40%) as moderate to high, and 12,565 ha (15%) as poor potential zone. The zonation corresponds well with the field data on greater well density (0.22/ha) and irrigated crop area (27%) in the high potential zone as against 0.02 wells/ha and only 6% irrigated area in the poor zone. The map is recommended for use in regulating groundwater development decisions and judicious expenditure on drilling new wells by farmers and the state authorities.  相似文献   

14.
典型红层严重缺水地区地下水补径排的关系如何?浅表层分化裂隙水补给来源和途径如何?是我们在实施红层找水工作中最为关心的问题。本文以重庆荣昌县为研究区,结合地下水1:5万水文地质调查工作,采用氢氧同位素测年方法,较为系统地研究了地下水的补给、径流、排泄循环关系和地下水储存规律,得出红层浅层地下水主要补给为大气降水,其次是地表水体。具有就地补给、就近排泄的循环特点。地下水总的富集规律是低山、岭、丘贫水,沟、谷、洼地富水。地貌是浅层地下水富集的主控因素。  相似文献   

15.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   

16.
Various hydrological, geological and geomorphological factors play a major role in the occurrence and movement of groundwater in different terrains. With advances in space technology and the advent of powerful personal computers, techniques for the assessment of groundwater potential have evolved, of which remote sensing (RS) and geographic information systems (GIS) are of great significance. The application of these methods is comprehensively reviewed with respect to the exploration and assessment of groundwater potential in consolidated and unconsolidated formations in semi-arid regions, and specifically in India. The process of such assessment includes the collection of remotely sensed data from suitable sensors and the selection of thematic maps on rainfall, geology, lithology, geomorphology, soil, land use/land cover, drainage patterns, slope and lineaments. The data are handled according to their significance with the assignment of appropriate weights and integrated into a sophisticated GIS environment. The requisite remote sensing and GIS data, in conjunction with necessary field investigations, help to identify the groundwater potential zones effectively.  相似文献   

17.
GIS for the assessment of the groundwater recharge potential zone   总被引:4,自引:0,他引:4  
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.  相似文献   

18.
为了定量计算陵区近海核电站排水管线泄漏情景下核素通过地下水途径向海洋环境的释放通量,以某近海核电站为例进行研究。首先,应用GOCAD软件建立三维地形地质模型,刻画地层的分布、剥蚀以及倾向等特点;然后,运用地下水数值模拟软件FEFLOW精细刻画丘陵区地下水系统的补给、径流和排泄特征;最后,以不被吸附滞留的核素3H和被吸附滞留的核素90Sr、137Cs为对象,通过实验测定了90Sr、137Cs在不同岩土介质中的分配系数,模拟计算了排水管线连续渗漏60 a后3H、90Sr、137Cs在地下水中的放射性分布及释放。结果表明:3H迁移速度基本与地下水流速一致,地下水中的最大放射性浓度为0.285 0 Bq/L,第20 000天时向收纳水域的释放通量达到最大值,约526 Bq/d;90Sr吸附性能相对较弱,最大迁移距离约80 m,地下水中的最大放射性浓度为0.032 1 Bq/L;137Cs吸附能力较强,相当长的时间内被滞留在管线附近,地下水中最大放射性浓度分别为6.840×10-3 Bq/L,释放通量为0 Bq/d。由弥散度的不确定分析可知,弥散度越大,地下水中3H的最大放射性浓度越小,向海洋环境的释放通量越多。  相似文献   

19.
Since incorrect site selection has sometimes led to the failure of artificial recharge projects,it is necessary to increase the effectiveness of such projects and minimize their failure by employing new techniques.Therefore,the present research used a combination of decision-making models,numerical groundwater modeling and clustering technique to determine suitable sites for implementation of an artificial recharge project.This hybrid approach was employed for the Yasouj aquifer located in southwestern Iran.In the first stage,by employing an AHP decision-making model,hydraulic conductivity,specific yield,slope,land use,depth to groundwater,and aquifer thickness were selected from 21 criteria used in previous research.The selected criteria were then entered as input into the classical k-means clustering model.Using the output,aquifer was divided into seven different regions or clusters.These clusters were then matched with the land use map,and some of the abandoned land areas were selected as the final option for implementing the artificial recharge project.Finally,the MODFLOW code in the GMS software was used to simulate the groundwater level and cluster the sites selected,with regards to increase in groundwater level.Results indicated that the most significant increases in groundwater level(43 and 27 cm) were those of Clusters 2 and 6 in the northern and western parts of the aquifer,respectively.Therefore,this approach can be used in other similar aquifers in arid and semi-arid regions to select the best sites for artificial recharge and to prevent loss of floodwaters.  相似文献   

20.
Groundwater recharge is affected by land use in (semi)arid areas. A new application of the chloride-mass-balance approach has been developed to estimate the reduction in groundwater recharge following land-use change by comparing chloride concentrations below the root zone and above the base of the chloride accumulation zone, before and after the land-use conversion. Two sites in the Loess Plateau of central China have been selected for study. Results from the Guyuan terrace region show that groundwater recharge beneath natural sparse small-grass was 100?mm/year, but the conversion to winter wheat about 100?years ago has reduced groundwater recharge to 55?mm/year. At the Xifeng Loess Plain the conversion from winter wheat, with groundwater recharge at 33?mm/year, to apple orchard 7?years ago has led to chloride accumulation to 5?m below land surface, suggesting the recharge rate has been reduced. This is in agreement with previous studies in these areas which have shown that the regional afforestation and other land-use conversions have resulted in deep soil desiccation and have caused an upper boundary to form with low matrix potential, thus preventing the soil moisture from actually recharging the aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号