首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports new geochemical data on the low temperature nitric thermal waters of Sikhote Alin. The studied alkaline waters belong to the HCO3-Na type with significant trace element variations. The waters demonstrate an increase in temperature and TDS from the south northward of Sikhote Alin. The oxygen and hydrogen isotopic data suggest their infiltration origin. The chemical composition of these waters was formed by water-rock interaction.  相似文献   

2.
A conceptual model with water samples from ten geothermal fields (?smil, Ilg?n (Çavu?cugöl), Tuzlukçu-Ak?ehir, Seydi?ehir and Kavakköy, Hüyük, Ere?li-Akhüyük, Kad?nhan?, Cihanbeyli, Karap?nar and Bey?ehir) in the province of Konya defined the geothermal system. Carbonates, quartzite and marbles of Paleozoic metamorphics are the reservoir rocks and the heating sources are igneous rock intrusions and geothermal gradient. The variable thermal water (CaMgHCO3, CaSO4, NaSO4, CaHCO3, CaNaHCO3, NaCl and CaNaClHCO3) had EC and temperature between 177.8 and 56,100 μS/cm and between 18.3 and 44 °C, respectively. Ca2+ in geothermal fluids are associated with marble and carbonate rocks and the high chloride shows direct connection with deep geothermal system, and prolonged contact with evaporite rocks. Sulphate originates from dissolution of and oxidation of sulphate and sulphur-bearing minerals. The high As, B, F and Mn concentration in some thermal water samples were determined as 85 μg/l, 148.56 mg/l, 3.01 mg/l and 208.13 mg/l, respectively. Reservoir temperatures computed by Na/K geothermometers were between 85.37–158.89 °C for Ak?ehir thermal waters and 58.78–90.45 °C for Ere?li thermal waters. The maximum reservoir temperature of other geothermal waters was 75 °C by the silica geothermometers.  相似文献   

3.
This study investigates the origin and chemical composition of the thermal waters of Platystomo and Smokovo areas in Central Greece as well as any possible relationships of them to the neighboring geothermal fields located in the south-eastern part of Sperchios basin. The correlations between different dissolved salts and the temperature indicate that the chemical composition of thermal waters are controlled by, the mineral dissolution and the temperature, the reactions due to CO2 that originates possibly by diffusion from the geothermal fields of Sperchios basin and the mixing of thermal waters with fresh groundwater from karst or shallow aquifers. Two major groups of waters are recognized on the basis of their chemistry: thermal waters of Na–HCO3–Cl type and thermal waters mixed with fresh groundwater of Ca–Mg–Na–HCO3 type. All thermal waters of the study area are considered as modified by water–rock interaction rainwater, heated in depth and mixed in some cases with fresh groundwater when arriving to the surface. Trace elements present low concentrations. Lithium content suggests discrimination between the above two groups of waters. Boron geochemistry confirms all the above remarks. Boron concentration ranges from 60 μg L?1 to 10 mg L?1, while all samples’ constant isotopic composition (δ11B ≈ 10 ‰) indicates leaching from rocks. The positive correlation between the chemical elements and the temperature clearly indicates that much of the dissolved salts are derived from water–rock interactions. The application of geothermometers suggests that the reservoir temperature is around 100–110 °C. Chalcedony temperatures are similar to the emergent temperatures and this is typical of convective waters in fault systems in normal thermal gradient areas.  相似文献   

4.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

5.
Caldas de Moledo thermal (27–46 °C) spring and borehole waters issue in the region of the famous Port Wine vineyards, in the Douro River valley (Northern Portugal). The most abundant lithotypes are lower Cambrian metasedimentary rocks, Variscan granitoids and aplite-pegmatitic veins. The thermal waters are characterised by pH ≈ 9.0, TDS ranging from 200 to 350 mg/L, and belong to the HCO3–Na facies indicating that the reservoir rock should be mainly granite. Since the local Spa is strongly dependent on water quality, the effects of mixing between local shallow cold groundwaters and deep thermal waters have been properly investigated. In the SO4 2? (mg/L) versus δ18O (‰ vs. V-SMOW) diagram we can observe that some of the thermal springs show evidences of mixing (higher SO4 2? concentrations) with local meteoric waters infiltrated at lower altitude sites (enriched δ18O signatures), showing the “altitude effect” in the isotopic composition of the recharge waters. Similar trends can be found in the K+, NO3 ?, Ca2+ and Na+ (mg/L) versus δ18O (‰ vs. V-SMOW) diagrams. It should be stated that SO4 2?, K+ and Ca2+ are present in the fertilizers and fungicides used in the vineyards in the northern part of the country. Up to now, the thermal waters from boreholes used in the local Spa do not show evidences of mixing with shallow groundwaters contaminated with agrochemicals. The results obtained so far indicate that in the near future, special attention should be put on the possible occurrence of diffuse agricultural contamination (related to the Port Wine vineyards) in the thermal spring waters.  相似文献   

6.
Thermal waters at the Godavari valley geothermal field are located in the Khammam district of the Telangana state, India. The study area consists of several thermal water manifestations having temperature in the range 36–76 °C scattered over an area of ~35 km2. The thermal waters are Na–HCO3 type with moderate silica and TDS concentrations. In the present study, detailed geochemical (major and trace elements) and isotope hydrological investigations are carried out to understand the hydrogeochemical evolution of these thermal waters. Correlation analysis and principal component analysis (PCA) are performed to classify the thermal waters and to identify the different geochemical processes controlling the thermal water geochemistry. From correlation matrix, it is seen that TDS and EC of the thermal springs are mainly controlled by HCO3 and Na ions. In PCA, thermal waters are grouped into two distinct clusters. One cluster represents thermal waters from deeper aquifer and other one from shallow aquifer. Lithium and boron concentrations are found to be similar followed by rubidium and caesium concentrations. Different ternary plots reveal rock–water interaction to be the dominant mechanism for controlling trace element concentrations. Stable isotopes (δ18O, δ2H) data indicate the meteoric origin of the thermal waters with no appreciable oxygen-18 shift. The low tritium values of the samples originating from deeper aquifer reveal the long residence time (>50 years) of the recharging waters. XRD results of the drill core samples show that quartz constitutes the major mineral phase, whereas kaolinite, dolomite, microcline, calcite, mica, etc. are present as minor constituents. Quartz geothermometer suggests a reservoir temperature of 100 ± 20 °C which is in good agreement with the values obtained from K–Mg and Mg-corrected K–Mg–Ca geothermometers.  相似文献   

7.
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 °C and the hot waters from 32.1 to 68.2 °C. All waters exhibited a near-neutral pH of 6.0–7.6. The thermal waters had a high total dissolved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0–852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca–Na–SO4 type (Hammam Righa) and cold waters in the recharge zone of the Ca–Na–HCO3 type (Zaccar Mount). Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95 °C for HR4, HR2, and HR1, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1–2.2 km. The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca–Na–SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich groundwater, resulting in waters that plot in the immature water field in the Na–K–Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 < R < 29.2 %. We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.  相似文献   

8.
《Applied Geochemistry》2001,16(6):633-649
Water inflows in the Gotthard Highway Tunnel and in the Gotthard Exploration Tunnel are meteoric waters infiltrating at different elevations, on both sides of an important orographic divide. Limited interaction of meteoric waters with gneissic rocks produces Ca–HCO3 and Na–Ca–HCO3 waters, whereas prolonged interaction of meteoric waters with the same rocks generates Na–HCO3 to Na–SO4 waters. Waters circulating in Triassic carbonate-evaporite rocks have a Ca–SO4 composition. Calcium-Na–SO4 waters are also present. They can be produced through interaction of either Na–HCO3 waters with anhydrite or Ca–SO4 waters with a local gneissic rock, as suggested by reaction path modeling. An analogous simulation indicates that Na–HCO3 waters are generated through interaction of Ca–HCO3 waters with a local gneissic rock. The two main SO4-sources present in the Alps are leaching of upper Triassic sulfate minerals and oxidative dissolution of sulfide minerals of crystalline rocks. Values of δ34SSO4 < ∼+9‰ are due to oxidative dissolution of sulfide minerals, whereas δ34SSO4 >∼+9‰ are controlled either by bacterial SO4 reduction or leaching of upper Triassic sulfate minerals. Most waters have temperatures similar to the expected values for a geothermal gradient of 22°C/km and are close to thermal equilibrium with rocks. However relatively large, descending flows of cold waters and ascending flows of warm waters are present in both tunnels and determine substantial cooling and heating, respectively, of the interacting rocks. The most import upflow zone of warm, Na-rich waters is below Guspisbach, in the Gotthard Highway Tunnel, at 6.2–9.0 km from the southern portal. These warm waters have equilibrium temperatures of 65–75°C and therefore constitute an important low-enthalpy geothermal resource.  相似文献   

9.
Chemical and isotopic data were measured for 51 leached brine springs in the Changdu-Lanping-Simao Basin (CD-LP-SM), China. The predominance of Cl and Na, saturation indices of carbonate minerals, and Na/Cl and Ca/SO4 ratios of ~1 suggest that halite, sulphate, and carbonate are the solute sources. Integration of geochemical, δ18O, and δD values suggests that springs are mainly derived from meteoric water, ice-snow melt, and water-rock interactions. B concentrations range from 0.18 to 11.9 mg/L, with δ11B values of ?4.37‰ to +32.39‰, indicating a terrestrial source. The δ11B-B relationships suggest B sources of crustal origin (marine carbonates with minor crust-derived volcanics); we did not identify a marine or deep mantle origin. The δ11B values of saline springs (+4.61‰ to +32.39‰) exceed those of hot (?4.37‰ to +4.53‰) and cold (?3.47‰ to +14.84‰) springs; this has contributed to strong water-rock interactions and strong saturation of dissolved carbonates. Conversely, the global geothermal δ11B-Cl/B relationship suggests mixing of marine and non-marine sources. The δ11B-Cl/B relationships of the CD-LP-SM are similar to those of the Tibet geothermal belt and the Nangqen Basin, indicating the same B origin. These differ from thermal waters controlled by magmatic fluids and seawater, suggesting that B in CD-LP-SM springs has a crustal origin.  相似文献   

10.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

11.
This work reports new hydrochemical data on the two types of cold high p CO2 groundwaters from the Mukhen deposit (Khabarovsk district). The first type is classed with HCO3-Ca-Mg waters with a relatively low TDS (up to 1.7 g/l) and high concentrations of Fe2+, Mn2+, Ba2+, and SiO2. The second type is of HCO3-Na composition with high TDS (up to 14 g/l) and elevated Li+, B, Sr2+, Br?, and I?. New oxygen (δ18O) and hydrogen (δD) isotopic data on the waters and carbon (δ13C) isotopic data on the gas phase, together with a detailed geological and hydrogeological analysis of the study area, allowed us to decipher the origin of both the mineral waters. Based on the tritium content (3H) in the ground and surface waters of the area, the duration of the mineral water circulation was estimated. It was established that the both types of groundwaters were formed during interaction of meteoric water with bedrock under active influence of CO2, however HCO3-Na groundwaters have longer residence time than HCO3-Ca-Mg groundwaters.  相似文献   

12.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

13.
Variations in the carbon isotope composition in gases and waters of mud volcanoes in the Taman Peninsula are studied. The δ13C values in CH4 and CO2 vary from ?59.5 to ?44.0‰ (δ13Cav = ?52.4 ± 5.4‰) and from ?17.8 to +22.8‰ (δ13Cav = +6.9 ± 9.3‰), respectively. In waters from most mud volcanoes of the peninsula, this parameter ranges from +3.3 to +33.1‰, although locally lower values are also recorded (up to ?12‰. Fractionation of carbon isotopes in the CO2-HCO3 system corresponds to the isotope equilibrium under Earth’s surface temperatures. The growth of carbon dioxide concentration in the gaseous phase and increase in the HCO3 ion concentration in their water phase is accompanied by the enrichment of the latter with the heavy 13C isotope. The δ13CTDIC value in the water-soluble carbon depends on the occurrence time of water on the Earth’s surface (exchange with atmospheric CO2, methane oxidation, precipitation of carbonates, and other processes), in addition to its primary composition. In this connection, fluctuations in δ13CTDIC values in mud volcanoes with stagnant waters may amount to 10–20‰. In the clayey pulp, concentrations of carbonate matter recalculated to CaCO3 varies from 1–4 to 36–50 wt %. The δ13C value in the latter ranges from ?3.6 to +8.4‰. Carbonate matter of the clayey pulp represents a mixture of sedimentogenic and authigenic carbonates. Therefore, it is usually unbalanced in terms of the carbon isotope composition with the water-soluble CO2 forms.  相似文献   

14.
This paper summarizes a new outlook on the conceptual model of Melgaço–Messegães CO2-rich cold (≈18 °C) mineral water systems, issuing in N of Portugal, based on their isotopic (2H, 3H, 13C, 14C and 18O) and geochemical features. Stable isotopes indicate the meteoric origin of these CO2-rich mineral waters. Based on the isotopic fractionation with the altitude, a recharge altitude between 513 up to 740 m a.s.l. was estimated, corroborating the tritium results. The lowest 3H content (0 TU) is found in the groundwater samples with the highest mineralization. The mineral waters circulation are mainly related to a granitic and granodioritic environment inducing two different groundwater types (Ca/Na–HCO3 and Na/Ca–HCO3), indicating different underground flow paths. Calcium dissolution is controlled by hydrolysis of rock-matrix silicate minerals (e.g. Ca-plagioclases) and not associated to anthropogenic sources. The shallow dilute groundwaters exhibit signatures of anthropogenic origins (e.g. NO3) and higher Na/Ca ratios. The stable isotopes together with the geochemistry provided no indication of mixing between the regional shallow cold dilute groundwater and mineral water systems. The heavy isotopic signatures identified in the δ13C data (δ13C = 4.7 ‰, performed on the total dissolved inorganic carbon (TDIC) of CO2-rich mineral waters) could be derived from a deep-seated (upper mantle) source or associated to methanogenesis (CH4 source). The negligible 14C content (≈2 pmC) determined in the TDIC of the mineral waters, corroborates the hypothesis of a mantle-derived carbon source to the mineral groundwater systems or dissolution of carbonate layers at depth.  相似文献   

15.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

16.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

17.
Water quality and hydrochemistry of Shariatpur district were evaluated in terms of hydrochemical composition and some important physico-chemical parameters. The groundwater of the study area is good for drinking, domestic as well as for irrigation purposes. Among the major ions, shallow tube well waters give higher concentration of Ca2+ which ranges from 24 to 260 mg/L. The deep tubewell waters show higher concentration of Na+ which varies from 74 to 582 mg/L during dry season. Among the trace elements most of the shallow aquifer samples show higher concentration of Fe2+, Mn2+ and As. Concentration of Fe2+ varies from 0.655 to 18.8 mg/L, and Mn2+ from trace to 0.868 mg/L during dry period. Hydrochemical analyses reveal significant seasonal variation in water quality of shallow aquifer. Both the shallow aquifer and the surface water of the study area are predominantly of Ca–Mg–HCO3 type, while the deep aquifer water is mainly of Na–K–Cl–SO4 type with slight inclination to Ca–Mg–HCO3 type. The study area is suitable for groundwater development if comprehensive and holistic approaches towards water resource management are taken into consideration.  相似文献   

18.
Northeastern Morocco is characterised by a large number of surface geothermal manifestations. Thermal waters are hosted within sedimentary rocks, and in particular the Liassic dolomitic limestones act as a reservoir. The presence of geothermal waters is closely related to important fault systems. Meteoric water infiltrates along those fractures and faults, gets heated, and then returns to the surface through hydrothermal conduits. Most of the thermal waters are of Na–Cl and Ca–Mg–HCO3 types. In this paper different geochemical approaches were applied to infer the reservoir temperature. Na–K–Mg1/2 ternary diagram points to temperatures ranging from 100 to 180 °C. Cation geothermometers suggest an average reservoir temperature of about 100 °C. Mineral solution equilibria analysis yields temperatures ranging from 50 to 185 °C. The silica enthalpy mixture model gives an average value (about 110 °C) higher than that inferred from cation geothermometers.  相似文献   

19.
The Vilarelho da Raia-Chaves region, located in northern Portugal adjacent to the Spanish border, is characterized by both hot and cold CO2-rich mineral waters issuing from springs and drilled wells. The present paper updates the conceptual circulation model of the Vilarelho da Raia cold CO2-rich mineral waters. Vilarelho da Raia mineral waters, dominated by Na and HCO3 ions, have formed mainly by interaction with CO2 of deep-seated mantle origin. The δ 18O, δ 2H and 3H values indicate that these waters are the result of meteoric waters infiltrating into Larouco Mountain, NW of Vilarelho da Raia, circulating at shallow depths in granitic rocks and moving into Vilarelho da Raia area. The conceptual geochemical and geophysical circulation model indicates that the hot and cold CO2-rich mineral waters of Chaves (76 °C) and Vilarelho da Raia (17 °C) should be considered manifestations of similar but not the same geohydrological systems. Electronic Publication  相似文献   

20.
《Applied Geochemistry》2005,20(9):1658-1676
Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na–HCO3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca–Mg–HCO3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 °C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ18O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ18O groundwaters. Altitudinal depletion of δ18O is 0.1‰/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号