首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
Three tectonic units have been recognized in the Chifeng area, Inner Mongolia, from north to south, including the Qiganmiao accretionary prism, Jiefangyingzi arc belt and Sidaozhangpeng molasse basin, which formed an Andeantype active continent margin during the early to middle Paleozoic. The Qiganmiao accretionary prism is characterized by a mélange that consists of gabbro, two-mica quartz schist and basic volcanic rock blocks and heterogeneously deformed marble matrix. Two zircon U-Pb ages of 446.0±6.3 Ma and 1104±27 Ma have been acquired and been interpreted as the metamorphic and forming ages for the gabbro and two-mica quartz schist, respectively. The prism formed during the early to middle Paleozoic southward subduction of the Paleo Asian Ocean(PAO) and represents a suture between the North China craton(NCC) and Central Asian Orogenic Belt(CAOB). The Jiefangyingzi arc belt consists of pluton complex and volcanic rocks of the Xibiehe and Badangshan Formations, and Geochronology analysis indicates that the development of it can be divided into two stages. The first stage is represented by the Xibiehe Formation volcanic rocks, which belong to the subalkaline series, enriched LREE and LILE and depleted HFSE, with negative Eu anomalies, and plot in the volcanic arc field in discrimination diagrams. These characters indicate that the Xibiehe Formation results from to the continental arc magmatic activity related to the subduction of the PAO during 400–420 Ma. Magmatism of the second stage in 380–390 Ma consists of the Badangshan Formation volcanic rocks. Geochemistry analysis reveals that rhyolite, basaltic andesite and basalt of the Badangshan Formation were developed in continental margin arc setting. Moreover, the basaltic andesite and basalt display positive Sr anomalies, and the basalt have very low Nb/La values, suggesting that fluid is involved in magma evolution and the basalts were contaminated by continental crust. The sequence of Sidaozhangpeng molasse basin is characterized by proximity, coarseness and large thickness, similar to the proximity molasses basin. According to our field investigation, geochronological and geochemical data, combined with previous research in this area, a tectonic evolutionary model for Andes-type active continental margin of the CAOB has been proposed, including a development of the subduction-free PAO before 446 Ma, a subduction of the PAO and arc-related magmatism during 446–380 Ma, and formation of a molasse basin during 380–360 Ma.  相似文献   

2.
The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship between these rocks and the iron deposits are studied.Geochemically,the ore-hosting volcanic rocks are sodiumrich(the averages of Na2O and Na2O/K2O are 4.31 wt.%and 8.56,respectively)and belong to the calc-alkaline series.They are enriched in LREEs and LILEs(Ba,U,K,and Sr),but depleted in HFSEs(Nb,Ta,and Ti).SHRIMP zircon U–Pb dating of the crystal tuff in the Aqishan Formation and the dacite in the Tugutu Bulak Formation yields ages of 337.52.3 Ma(n?15,MSWD?0.85)and 313.03.3 Ma(n?13,MSWD?0.74),respectively,indicating that the sodium-rich volcanic rocks formed from the early–late Carboniferous.Electron microprobe data from plagioclases demonstrate that albites and/or oligoclases were formed in the basic–intermediate–acid volcanic rocks.Two stages of albitization are identified,and the latter is likely attributed to the dissolution of iron in the Aqishan–Yamansu belt.The sodium-rich volcanic rocks probably formed by the interaction between volcanic lava and seawater after volcanoes erupted on the seafloor;meanwhile,the albites formed by element substitution in a low-metamorphic environment.The spatiotemporal coupling relationship between sodium-rich volcanic rocks and iron deposits in the Aqishan–Yamansu belt is favorable.Iron dissolved from the dark minerals of basic–intermediate volcanic rocks through sodium metasomatism is one of the material sources for the iron deposits.  相似文献   

3.
During the Late Paleozoic, West Junggar(Xinjiang, NW China) experienced a shift in tectonic setting from compression to extension. Ha'erjiao is an important area for investigating collisional structures, post–collisional structures, and magmatic activities. Based on the petrological and geochemical characteristics of pyroclastic and other volcanic rocks in the Permian Kalagang Formation from the borehole ZKH1205 in the Jimunai Basin, the main types of source rock for the pyroclastic rocks deposited in the basin are identified and their implications for the Early Permian tectonic setting examined. The abundance of basalt and andesite lithic fragments in the pyroclastic rocks, together with the REE characteristics and the contents of transition and high field strength elements show that the source rocks were chiefly intermediate–basic volcanic rocks. High ICV values, low CIA values, low Rb/Sr ratios, low Th/U ratios and the mineralogical features suggest weak chemical weathering of the source rocks; the geochemical patterns of the pyroclastic rocks might not only have been impacted by crustal contamination but also might be related to the nature of the magma from the source area. The geochemical properties of the pyroclastic rocks distinguish them from arc-related ones, and such samples plot in the within-plate basalt(WPB) field in some diagrams. This is consistent with the formation background of the Early Permian volcanic rocks in this region.  相似文献   

4.
We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area,northeastern Inner Mongolia,to determine their age,petrogenesis and sources,which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range.The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite,based on their chemical compositions.The zircons from two of these trachyandesites are euhedral-subhedral in shape,display clear oscillatory growth zoning and have high Th/U ratios(0.31-1.15),indicating a magmatic origin.The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma.The volcanic rocks are high in alkali(Na_2O + K_2O = 6.22-8.26 wt%),potassium(K_2O = 2.49-4.58 wt%) and aluminium(Al_2O_3 = 14.27-15.88 wt%),whereas they are low in iron(total Fe_2O_3 = 3.76-6.53 wt%) and titanium(TiO_2 = 1.02-1.61 wt%).These volcanic rocks are obviously enriched in large ion lithophile elements,such as Rb,Ba,Th and U,and light rare earth elements,and are depleted in high field strength elements,such as Nb,Ta and Ti with pronounced negative anomalies.Their Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.16‰ to+1.64‰) and low T_(DM)(t)(694-767 Ma).The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the MongolOkhotsk Ocean.Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals,plagioclase,ilmenite,magnetite and apatite played an important role during the evolution of the magma.These shoshonitic rocks were produced by the partial melting of the enriched lithospheric mantle in an extensional regime,which resulted from the gravitational collapse following the final closure of the Mongol-Okhotsk Ocean in the Middle-Late Jurassic.  相似文献   

5.
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.  相似文献   

6.
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area.Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China.Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning,a number of researchers have focused on Mesozoic volcanic events.The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb.The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age,the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma,the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma,respectively. Combined with the data of recent publication on volcanic rocks ages;the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods:119 Ma,113 Ma and 103 Ma.The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province,establishing Mesozoic volcanic event sequence,discussing geological tectonic background,and surveying the relation between noble metals to the Cretaceous volcanic rocks,but also offers important information of Mesozoic volcanism in northeastern China.  相似文献   

7.
This paper presents the results of combined studies of geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes carried out upon the rhyodacite and ignimbrite of Shangshu village, Shangyu town and Shanghupeng village of Jiangshan City in Zhejiang Province, along the northwestern side of the Jiangshan–Shaoxing suture. SHRIMP zircon U-Pb dating of samples in the three areas yielded weighted mean 206 Pb/238 U ages of 842.8 ± 6.9 Ma and 850.0 ± 7.3 Ma, 839 ± 9 Ma and 832.2 ± 8.1 Ma, 828.3 ± 8.5 Ma and 836.9 ± 9.9 Ma, respectively. These ages are older than the volcanic rocks of the Shangshu Formation dated at around 780 Ma distributed in Fuyang City, Hangzhou City, Kaihua County, etc. The volcanic rocks generally have high SiO2(54.08–76.80 wt%) and Al2 O3(12.40–21.31 wt%), low Fe2 O3(0.68–8.92 wt%), MgO(0.29–2.49 wt%), CaO(0.12–2.86 wt%), TiO2(0.10–1.59 wt%) and P2 O5(0.01–0.39 wt%), with variable total alkalis(K2 O + Na2 O =5.42–8.29 wt%). There exists a clear negative correlation between SiO2 and P2 O5. The volcanic rocks have A/CNK ratios of 1.03–2.77 and thus are peraluminous. They are characterized by enrichment in LREE, Rb, Ba, Zr, Hf, K, Th, La, U and depletion in Nb, Sr, P, Ti, with distinct LREE and HREE fractionation of(La/Yb)N values of 5.68–11.67, and with a moderate negative Eu anomaly(Eu=0.58–0.89). Whole-rock geochemical data shows that the Jiangshan volcanic rocks are possibly I-type granitic rocks, even though they have some characteristics of AS-type granites due to the magma fractional crystallization and water-rock interaction. Zircon δ18 O values are 3.97‰–5.49‰(average 4.50‰), 2.90‰–5.21‰(average 4.32‰) for ignimbrite from Shangshu village section, and Shanghupeng village section, respectively. They are slightly lower than the average δ18 O values of igneous zircons in equilibrium with mantle magmas(5.3 ± 0.6‰(2σ)), the lower δ18 O value also demonstrating the presence of high temperature water-rock interactions. The ignimbrite rocks have positive εNd(t)(4.02, 3.37, 3.91, 4.74, 2.85, 4.39, totals from the three areas) and εNd(t)(in-situ zircon)(4.3–14.6, a weighted mean of 8.4; 6.6–12.7, a weighted mean of 9.0; 8.1–12.0, a weighted mean of 9.5, respectively, from the three areas). In conjunction with the trace element studies, they indicate that the source region of the Jiangshan volcanic rocks was mainly composed of juvenile lower crustal material, mixed with some mantle-sourced magma. Detailed elemental and isotopic data suggest that the Jiangshan volcanic rocks were formed in a continental arc setting. There is a series of ca. 860–830 Ma volcanic rocks formed in a back-arc extensional setting in the southern margin of the eastern Jiangnan Orogen, along the northwest side of the Jiangshan–Shaoxing suture. The first stage rift-related anorogenic magmatism may have occurred as early as ca. 860 Ma in the eastern Jiangnan Orogen.  相似文献   

8.
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.  相似文献   

9.
The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area,which are in the eastern part of the East Kunlun Orogenic Belt.It outcrops as tectonic slices intruding tectonically in the Paleoproterozoic Baishahe Group and the Paleozoic Nachitai Group.The Kekekete mafic and ultramafic rocks is located near the central fault in East Kunlun and lithologically mainly consists of serpentinite,augite peridotite,and gabbro.The LA-ICP-MS zircon U-Pb age of the gabbro is 501±7 Ma,indicating that Kekekete mafic-ultramafic rocks formed in the Middle Cambrian.This rock assemblage is relatively poor in SiO2 and(Na2 O+K2 O) but rich in MgO and SFeO.The chondrite-normalized REE patterns of the gabbro dip slightly to the right;the primitive mantle and MORBnormalized spidergrams of trace elements show enrichment of large-ion lithophile elements(Cs,Rb,Ba,etc.) and no differentiation of high field strength elements.The general dominance of E-MORB features and the geochemical characteristics of OIB suggest that the Kekekete mafic-ultramafic rocks formed in an initial oceanic basin with slightly enriched mantle being featured by varying degrees of mixing of N-MORB depleted mantle and a similar-OIB-type source.From a comprehensive study of the previous data,the author believes that the tectonic history of the East Kunlun region was controlled by a geodynamic system of rifting and extension in the late stages of the Neoproterozoic to early stages of the Early Paleozoic and this formed the paleo-oceanic basin or rift system now represented by the ophiolites along the central fault in East Kunlun,the Kekekete mafic-ultramafic rocks and Delisitan ophiolite.  相似文献   

10.
Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean 206Pb/238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean 206Pb/238U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean 206Pb/238U age of 113±4 Ma. The volcanic rocks have SiO2=60.24%–77.46%, MgO=0.36%–1.29% (Mg#=0.32–0.40) for the Naozhigou Formation, SiO2=51.60%–59.32%, MgO=3.70%–5.54% (Mg#=0.50–0.60) for the Ergulazi Formation, and SiO2=58.28%–76.32%, MgO=0.07%–1.20% (Mg#=0.14–0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial 87Sr/86Sr ratios (0.7053-0.7083) and low εNd(t) values (?8.38 to ?2.43), and display an EMII trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate.  相似文献   

11.
对内蒙古巴林右旗新开坝地区大石寨组玄武安山岩进行了锆石U-Pb年代学、锆石原位Hf同位素分析及地球化学研究,定年结果表明玄武安山岩结晶年龄为280Ma,形成于早二叠世。地球化学特征显示高场强元素Nb、Ta强烈亏损,Ti轻微亏损,大离子亲石元素Sr、Ba、Rb、K富集,表现出岛弧火山岩特征。地球化学结果和Hf同位素的不同来源(亏损地幔及古老地壳的再循环),表明岩浆起源于俯冲沉积物熔体和流体交代地幔楔橄榄岩。与大石寨地区玄武安山岩进行了对比研究,表明巴林右旗大石寨组玄武安山岩在俯冲的构造背景,形成于岛弧-活动大陆边缘弧的环境,古亚洲洋板块由南向北进行俯冲,说明早二叠世古亚洲洋未闭合。  相似文献   

12.
The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326–321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326–276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5–30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO_2(47.51–51.47 wt%), Al_2O_3(11.46–15.55 wt%), ΣFeO(8.27–9.61 wt%), MgO(13.01–15.18 wt%) and CaO(9.13–11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302–1351°C and pressures of 0.92–1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33–45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326–275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related environments locally. The final collision between the North China craton and the South Mongolian microcontinent may have lasted until ca. 230 Ma.  相似文献   

13.
对大兴安岭北段图里河地区满克头鄂博组火山岩进行了锆石U-Pb年代学及岩石地球化学研究,以便对其岩石成因和构造背景给予制约。流纹岩LA-ICP-MS锆石U-Pb定年结果表明,该地区满克头鄂博组火山岩形成时代为晚侏罗世(157±1Ma)。该组火山岩具有高硅(Si O2=69.09%~75.92%)、富碱(K2O+Na2O=8.04%~9.23%),贫镁、铁、钙的特征,属高钾钙碱性、偏铝质-弱过铝质岩石;稀土元素配分曲线呈轻稀土富集的右倾形式,(La/Yb)N=5.85~13.53,无铕异常或具有较弱的铕负异常;火山岩样品富集Rb、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素。Mg#值为12.14~31.01,平均值22,Nb/Ta值(6.67~27.17,平均值12.23),Rb/Sr值(0.35~3.63,平均值1.58),显示火山岩岩浆源区为下地壳。依据岩石地球化学特征、构造判别图解,结合区域构造演化特征,认为满克头鄂博组火山岩形成于蒙古—鄂霍茨克洋闭合的造山后伸展背景。  相似文献   

14.
The geodynamic setting of the Xigaze ophiolite has long been debated. Structural and geochemical evidence suggest the Xigaze ophiolite was formed at a slow‐spreading ridge (Nicolas et al., 1981; Liu et al., 2016). Based on incompatible element concentrations, the Xigaze ophiolite volcanics are consistent with the ubiquitous subduction signature in suprasubduction zone (Bedard et al., 2009; Hebert et al., 2012; Dai et al., 2013). It is noteworthy that the Xigaze ophiolite is different from the Geotimes and Lasail and Velly units from Oman ophiolite, respectively. The mafic rocks of the Xigaze ophiolite generally resemble typical N‐MORB and Geotimes volcanics in composition except for slight depletions of Th and Nb (Fig.1a). Although the Xigaze rocks have similar Th and Nb concentrations to Lasail and Velly rocks, most incompatible elements in the Xigaze rocks are comparable to N‐MORB. Petrography in gabbro of Xigaze ophiolite shows that euhedral plagioclases are enclosed by clinopyroxenes suggesting that these minerals have crystallized from an anhydrous magma (Sisson and Grove, 1993). Although the Xigaze volcanic rocks are slightly depleted in Th and Nb, they have MORB‐like trace element characteristics implying that they are derived from an anhydrous MORB magma at spreading centre. Godard et al. (2006) suggested that the mantle source of the Oman ophiolite have element and isotopic characteristics similar to Indian Ocean MORB, where the mantle preserved some older slab materials. A negative Nb anomaly of Oman Geotimes volcanic rocks may be resulted from contamination of the slab materials via decompression melting of the convecting mantle. Moreover, the Xigaze rocks have 1.27–3.18 of (Th/Nb)N ratios similar with those of Geotimes volcanics ((Th/Nb)N =0.51–2.77) and lower than those of Lasail and Velly units ((Th/Nb)N =2.12–6.35). These features suggest that the Xigaze ophiolite may have formed at the spreading centre.  相似文献   

15.
In this study, plagiogranites in the Diyanmiao ophiolite of the southeastern Central Asian Orogenic Belt(Altaids) were investigated for the first time. The plagiogranites are composed predominantly of albite and quartz, and occur as irregular intrusive veins in pillow basalts. The plagiogranites have high SiO_2(74.37–76.68 wt%) and low Al_2O_3(11.99–13.30 wt%), and intensively high Na_2O(4.52–5.49 wt%) and low K_2O(0.03–0.40 wt%) resulting in high Na_2O/K_2O ratios(11.3–183). These rocks are classified as part of the low-K tholeiitic series. The plagiogranites have low total rare earth element contents(∑REE)(23.62–39.77 ppm), small negative Eu anomalies(δEu=0.44–0.62), and flat to slightly LREE-depleted chondrite-normalized REE patterns((La/Yb)N=0.68–0.76), similar to N-MORB. The plagiogranites are also characterized by Th, U, Zr, and Hf enrichment, and Nb, P, and Ti depletion, have overall flat primitivemantle-normalized trace element patterns. Field and petrological observations and geochemical data suggest that the plagiogranites in the Diyanmiao ophiolite are similar to fractionation-type plagiogranites. Furthermore, the REE patterns of the plagiogranites are similar to those of the gabbros and pillow basalts in the ophiolite. In plots of SREE–SiO_2, La–SiO_2, and Yb–SiO_2, the plagiogranites, pillow basalts, and gabbros show trends typical of crystal fractionation. As such, the plagiogranites are oceanic in origin, formed by crystal fractionation from basaltic magmas derived from depleted mantle, and are part of the Diyanmiao ophiolite. LA–ICP–MS U–Pb dating of zircons from the plagiogranites yielded ages of 328.6±2.1 and 327.1±2.1 Ma, indicating an early Carboniferous age for the Diyanmiao ophiolite. These results provide petrological and geochronological evidence for the identification of the Erenhot–Hegenshan oceanic basin and Hegenshan suture of the Paleo-Asian Ocean.  相似文献   

16.
A complex of gabbro (with metamorphic pyroxenite xenoliths)–gabbroic diorite–granodiorite was recently discovered in Tongxunlian, Xilinhot city, Inner Mongolia. Zircon U–Pb isotopic dating showed that the gabbro and the granodiorite were formed ca. 319 ± 1 Ma and ca. 318 ± 1 Ma respectively, indicating that emplacement of the composite rocks occurred in the late Carboniferous. Positive εHf(t) values of +12.0 to +14.1 and two‐stage model ages (TDM2) of 418 to 537 Ma of these rocks are similar to the age of formation of metamorphic pyroxenite (560 Ma, based on Sm–Nd isochron dating) and suggest that the rocks were derived from depleted lithospheric mantle (metamorphic pyroxenite). Our findings revealed that all of these calc‐alkaline and metaluminous intrusive rocks formed from the fractional crystallization of comagmatic evolution in an island‐arc setting. Moreover, the gabbro–gabbroic diorite in the study region was characterized by a low TiO2 content, a slight deficit of Nb, a surplus of Ta, and relatively low LREE/HREE ratios. Along with a relatively high Zr/Y ratio (4.0 to 5.6), these characteristics indicate that the rocks may have been formed by melting of the mantle wedge via metasomatism. Combination with other features of the rocks indicates a two‐episode tectonic model: we conclude that first, the fluid and Si‐rich melt metasomatism caused partial melting of the enriched lithospheric mantle, and these influences were then stored in the mantle; and second, slab breakoff resulted in upwelling of the upper mantle's soft fluid (stratum), which melted the enriched mantle of the lithosphere and formed the basaltic magma of the gabbro–gabbroic diorite. This study provides new geological evidence to support the Neoproterozoic subduction between the Paleo‐Asian Ocean plate and the Xilinhot microcontinent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The convergence process between South China and the Indochina Block is still controversial. A large number of igneous rocks scattered along the current China‐Vietnam border provide a good opportunity to investigate the tectonic evolution. Babu ophiolites, cropping out in the southeastern Yunnan province (SW China), consist primarily of metaperidotite, serpentinite, pillow basalt (metabasalt), gabbro, metadiabase. Most of them are fault contacted and strongly sheared, especially between metaperidotite/serpentinite and metabasalt. U‐Pb zircon analyses yield an Early Permian formation age of ~278 Ma. Basalts and metagabbros show light rare earth elements (LREEs)‐depleted and heavy rare earth elements (HREEs)‐flat REE patterns, and large ion lithophile elements (LILEs)‐depleted primitive‐normalized spider diagrams without Nb‐Ta anomalies, which is similar to N‐MORB. Metaperidotites have low initial 187Os/188Os (0.122‐0.126) and γOs values, and indicate that they were derived from a depleted mantle source. Relative low (87Sr/86Sr)i and high εNd(t) values of basalts and metagabbros also support their DMM origin. The petrological, geochemical and isotope characteristics suggest that Babu ophiolites were N‐MORB‐type and represent remnants of an Early Permian oceanic crust. Mafic‐ultramafic rocks exposed in Cao Bang area (NE Vietnam) have recently been considered as dismembered Paleotethyan ophiolites instead of were genetically linked to the Emeishan Large Igneous Province. U‐Pb zircon analyses suggest an Early‐Middle Permian age (274 ±18 Ma) for the formation of ultramafic rocks. Both whole rock geochemistry and Cr‐spinel mineral chemistry show MORB‐like characteristics. Field observations suggest that Babu and Cao Bang ophiolite complex structurally overlie Middle‐Triassic deposits, and form a tectonic mélange zone. It developed from the subduction of a Paleotethyan subsidiary ocean basin between the South China and Indochina blocks until their collision..  相似文献   

18.
刘翠  邓晋福  刘俊来  石耀霖 《岩石学报》2011,27(12):3590-3602
本文对中国云南哀牢山构造岩浆带内的雅轩桥、帽盒山、绿春火山岩等开展了相关研究.雅轩桥附近的火山岩为晚二叠世,岩性主要为橄榄粗安岩-玄武岩(少量安山岩),在TAS图上既有碱性又有亚碱性.钾含量较低(<1.19%),为低钾钙碱-中钾钙碱性,Peacock碱钙指数以钙碱性为主.与MORB相比,其痕量元素蛛网图亏损Nb、Ta,而富集Pb,从Zr-V曲线呈平坦型,并且整体比MORB亏损.稀土元素配分模式与MORB相近,但略显轻稀土元素富集和重稀土元素亏损.在构造环境判别图上均位于火山弧环境.他郎河边(雅轩桥地区)火山岩为英安岩,属亚碱性,中钾钙碱性,Peacock指数为钙性.痕量元素蛛网图、REE模式图以及大地构造环境判别图,均表明其属于弧的构造环境.由上推测雅轩桥火山岩在晚二叠世属于弧火山岩.帽盒山玄武岩的锆石SHRIMP U-Pb测年结果为249±1.6Ma,为早三叠世.岩性为亚碱性钠长玄武岩,低钾钙碱性系列,Peacock碱钙指数以钙性为主.痕量元素蛛网图和REE配分模式图与MORB相比,LREE略微富集.在构造环境判别图中位于从E-MORB向岛弧过渡的构造环境.绿春地区流纹岩的锆石SHRIMP U-Pb年龄为247.3±1.8Ma,为早三叠世,属亚碱性,钾玄岩系列,Peacock碱钙指数为碱钙性.痕量元素蛛网图、REE配分模式图及大地构造环境判别图显示其为成熟岛弧向陆陆碰撞的过渡环境.结合前人研究,推测哀牢山洋在晚泥盆世形成,可能在石炭世-早二叠世(?)处于洋的扩张期.晚二叠世时,在哀牢山洋的西侧出现了雅轩桥的初始孤火山岩,预示着至少在这一时期,哀牢山洋已经开始俯冲.到三叠世早期(249±1.6Ma),在哀牢山洋的东侧出现了具有弧和MORB的双重特性的帽盒山玄武岩,可能指示此时哀牢山洋盆已经变小,或已转化为孤间或弧后盆地,洋的演化进入了晚期阶段,并且在局部地段,如绿春地区,此时(247.3±1.8Ma)已经进入到成熟岛弧向陆陆碰撞的过渡阶段.因此支持哀牢山洋在晚三叠世闭合的结论,亦符合上三叠统一碗水组不整合在哀牢山蛇绿混杂岩之上的事实.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号