首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孔祥胜  苗迎 《地球学报》2014,35(2):239-247
为证实大气干湿沉降物是岩溶地下河中多环芳烃(PAHs)的来源,研究选择了某城市典型的岩溶地下河水源地作为研究地点,采用大气干湿采样器、聚氨酯泡沫(PUF)大气被动采样器分别采集大气及其干湿沉降物样品,同时采集地下河水样和分层采集流域土壤,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物。结果表明,地下河流域大气干湿沉降中PAHs的干湿沉降通量为147.26 ng·(m2·d)-1,流域PAHs沉降量为1943.8 g;大气中的PAHs浓度为45.33 ng·m-3;地下河水中PAHs浓度平均值为220.98 ng·L-1;土壤中PAHs浓度为38.72 ng·g-1;大气、降雨和土壤中PAHs组成以2~3环的萘、芴、菲、荧蒽、芘5种为主,地下河水中以芴、菲、荧蒽、芘、苯并[a]蒽、苯并[a]芘6种为主。利用地下河多介质中的16种PAHs成分谱、特征比值结合它们的物理化学性质进行PAHs的源解析,研究显示大气干湿沉降是岩溶地下河水中多环芳烃的主要污染源之一,这归因于岩溶地区防污性能的脆弱性。  相似文献   

2.
Sources of the sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency priority pollutants list were determined in sediments of Kolo Creek using diagnostic ratios of parent PAHs[phenanthrene/phenanthrene + anthracene; fluoranthene/fluoranthene + pyrene; benz(a) anthracene/benz(a) anthracene + chrysene and indeno(1,2,3-d)pyrene/indeno(1,2,3-cd)pyrene + benzo(ghi)pyrelene]. The study was conducted over four seasons (dry, late dry, rainy and late rainy seasons). Applying cross plots of the diagnostic ratios revealed that PAHs in Kolo Creek sediment have pyrogenic origins except in the rainy season that had petrogenic origins. Comparison of diagnostic ratio values obtained from this study with literature values enabled the further classification into types of pyrogenic and/or petrogenic sources. While the pyrogenic sources of PAHs were mainly as a result of Grass/Wood combustion, the petrogenic PAHs were as result of drained diesel and lubricating oil. The predicted sources corresponded with the prevailing human activities in the vicinity, especially samples collected near a petrol station and an abattoir. This study further affirms the simplicity and accuracy of the use of diagnostic ratios for PAHs source prediction.  相似文献   

3.
Urban and suburban storm water runoff from ten locations in eastern Massachusetts was analyzed for 39 polycyclic aromatic hydrocarbons (PAHs) compounds. Similar profiles in PAH composition were observed for groups of samples and appear to reflect land use. The largest group includes, urban storm water from areas with a mix of industrial, commercial, and residential use. Fluoranthene, phenanthrene, pyrene, chrysene, and benzo (b) fluoranthene were the predominant compounds in this group, but lighter molecular weight PAHs were also present. Sources of PAHs to storm water include a combination of petroleum and combustion. The profile of PAH compounds in local atmospheric deposition was similar to urban storm water, but differed in several of the predominant compounds. PAHs in storm water could increase the levels of these compounds in nearshore sediments and may be the most important source of high molecular weight PAHs to these environments.  相似文献   

4.
重工业区高脆弱岩溶含水层中多环芳烃污染的初步研究   总被引:1,自引:0,他引:1  
以西南岩溶地区某市重工业区为研究对象,采集水文地质单元内地下水和土壤样品,利用气相色谱-质谱法(GC-MS)测试美国环保署16 种多环芳烃(PAHs)优控物。初步研究表明,研究区地下水16种PAHs均被检出,浓度为1 135.79~1 361.26 ng/L,以菲、蒽、萘、屈、芘为主;地下水处于中等污染程度,其中苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽4种浓度超过美国EPA2009《国家推荐的优先有毒污染物水质标准》标准;PAHs特征比值显示含水层中的PAHs来源于燃煤和炼焦污染源,与钢铁厂和化肥厂排放的特征有机污染物一致。研究区污染源下游大面积区域地下水已经受到PAHs污染,且出现排泄区PAHs浓度高于径流区的现象,岩溶含水层PAHs的污染主要受两方面影响:一是洼地、裂隙发育,断层破碎带和强风化白云岩等为PAHs在含水层中的运移提供了有利条件,同时污染源区内地下水大量开采加速了污染物向地下水的入渗;二是水电站建坝蓄水发电,江水水位抬高,河岸地下水排泄速度减慢,可能致使岩溶含水层中PAHs的自净能力减弱。生态风险评价显示地下水中菲、蒽、芘、苯并[a]蒽、苯并[b]荧蒽处于重污染风险,应采取措施降低污染风险。   相似文献   

5.
Karst areas have much higher ecological vulnerability and are easy to be contaminated by polycyclic aromatic hydrocarbons (PAHs), which are introduced as health risk pollutants. PAHs ratios were used to understand the sources and transport behavior of PAHs conducted in the karst Nanshan Underground River, China. Water, sediments from the underground river and water, sediments, soil from the surface were collected monthly in 2011 and 2012. Abundant PAHs were found both in the underground river and in the surface system. The detected ΣPAHs concentrations varied from 353 to 13,203 ng L?1 in the groundwaters and content from 169 to 12,038 ng g?1 in the sediments of the underground river. The ratios of anthracene to anthracene, plus phenanthrene and fluoranthene to fluoranthene, plus pyrene indicated that PAHs were delivered in the groundwaters from combusted grass, wood, and coal, while in the sediments were a mixture of non-combusted petroleum, grass, wood, coal and combusted grass, wood, coal. The similarities in sources between an underground river and surface system indicated that farmlands play a major role for the transport of PAHs and contamination in the underground river. Karst features are liable for the transport behavior.  相似文献   

6.
谢文泉  贾建亮  刘招君 《地质学报》2023,97(7):2363-2377
多环芳烃(PAHs)是古环境、古野火以及古气候的重要地质记录,本文通过气相色谱质谱法(GC- MS)研究了柴达木盆地北缘中侏罗统石门沟组煤中多环芳烃分布特征,检测出一系列二环至七环芳烃化合物,包括高等植物衍生多环芳烃(卡达烯、6- 异丙基- 1- 异己基- 2- 甲基萘、惹烯、西蒙内利烯以及二氢惹烯)和燃烧衍生多环芳烃(荧蒽、芘、苯并\[a\]蒽、、苯并荧蒽、苯并\[e\]芘、苯并\[a\]芘、茚并\[cd\]芘、苯并\[ghi\]苝和晕苯)等。这些多环芳烃的检出表明石门沟组煤沉积于具有显著陆源高等植物输入的微咸水湖沼环境,成熟度较低(平均随机反射率为056%)。石门沟组煤中高等植物衍生多环芳烃以极高的惹烯含量为特征,且存在较高丰度的西蒙内利烯和二氢惹烯,卡达烯丰度极低,反映出成煤期陆地植被类型以松柏类植物的针叶林为主,气候温暖湿润。同时,煤中丰富的燃烧衍生多环芳烃证实了柴达木盆地北缘中侏罗世存在广泛的陆地古野火,较高的大气氧气浓度(256%)可能是该时期野火频发的一个重要诱因。本次研究为柴达木盆地中侏罗世古野火事件的研究提供了重要的分子化石证据,也是对中侏罗世古环境和古气候研究的有益补充。  相似文献   

7.
A study was conducted to investigate the performance of amaranth, a known hyperaccumulator of cesium, on the promotion of the dissipation of soil phenanthrene and pyrene, which are PAHs (polycyclic aromatic hydrocarbons). Amaranthus tricolor L. een choi was the cultivar used. The presence of Amaranthus tricolor L. evidently enhanced the dissipation of these PAHs in soils with initial phenanthrene concentrations of 7.450–456.5 mg/kg dw (dw, dry weight) and pyrene of 8.010–488.7 mg/kg dw. At the end of the experiment (45 days), the residual concentrations of phenanthrene and pyrene in spiked soils with plants were generally higher than those with no plants. The loss of phenanthrene and pyrene in vegetated soils was 87.85–94.03% and 46.89–76.57% of the soil with these chemicals, which was 2.55–13.66% and 11.12–56.55% larger than the loss in non-vegetated soils, respectively. The accumulation of phenanthrene and pyrene by the plant was evident. Root and shoot concentrations of these chemicals monotonically increased with increasing soil PAH concentrations. Bioconcentration factors (BCFs), defined as the ratio of chemical concentrations in plants and in the soils (on a dry weight basis), of phenanthrene and pyrene by roots were 0.136–0.776 and 0.603–1.425, while by shoots were 0.116–0.951 and 0.082–0.517, respectively. BCFs of phenanthrene and pyrene tended to decrease with the increasing concentrations of soil phenanthrene and pyrene. Plant accumulation only accounted for less than 0.32% (for phenanthrene) and 0.33% (for pyrene) of the total amount enhancement of the dissipated PAHs in vegetated vs. non-vegetated soils. In contrast, plant-promoted microbial biodegradation was the predominant contribution to the plant-enhanced dissipation of soil phenanthrene and pyrene. These results suggested the feasibility of the radionuclide hyperaccumulator in phytoremediating the soil PAH contaminants.  相似文献   

8.
《Organic Geochemistry》1999,30(8):891-900
The fate of polycyclic aromatic hydrocarbon (PAH) mixtures in marine sediments can be difficult to determine due to extraction, analytical and matrix barriers. The purpose of this work was to develop and validate methods to kill indigenous microorganisms in marine sediments, to spike the sediments with a mixture of PAHs in a minimally invasive fashion and to age the treated sediments while following the effects of the treatments on the PAHs and several groups of microorganisms. Following gamma irradiation (0.0, 2.5, 3.5 and 5.0 Mrad), the sediments were mixed with known amounts of PAHs that had been coated onto fine-grained sand. During the subsequent ageing process, levels of extractable PAHs and numbers of microorganisms were monitored. The addition of PAHs to the unirradiated sediment seemed to rapidly induce the degradation of phenanthrene, fluoranthene and pyrene, while these PAHs decreased to a much smaller extent in the irradiated sediments in the 376 days of the experiment. The heavier PAHs, chrysene and benzo(a)pyrene, showed slight decreases in extractable concentrations at all irradiation levels, suggesting PAH sequestration/ageing over time. While some microbial populations recovered rapidly, culturable PAH degraders did not recover at any irradiation level tested and concentrations of light molecular weight PAHs in sediments irradiated at all levels dropped only slightly. This suggests that even the lowest dose (2.5 Mrad) may inhibit PAH degradation sufficiently to permit ageing of the spiked sediments for 6 months to a year. The methods described show promise for the generation of realistic, well-characterized spiked sediments for use in biodegradation and bioavailability experiments.  相似文献   

9.
Understanding the natural mechanisms that control fire occurrence in terrigenous ecosystems requires long and continuous records of past fires. Proxies, such as sedimentary charcoal and tree-ring fire scars, have temporal or spatial limitations and do not directly detect fire intensity. We show in this study that polycyclic aromatic hydrocarbons (PAHs) produced during wildfires record local fire events and fire intensity. We demonstrate that high performance liquid chromatography with fluorescence detector (HPLC-FLD) is superior to gas chromatography–mass spectrometry (GC–MS) for detecting the low concentrations of sedimentary PAHs derived from natural fires. The HPLC-FLD is at least twice as sensitive as the GC–MS in selective ion monitoring (SIM) mode for parent PAHs and five times as sensitive for retene. The annual samples extracted from varved sediments from Swamp Lake in Yosemite National Park, California are compared with the observational fire history record and show that PAH fluxes record fires within 0.5 km of the lake. The low molecular weight (LMW) PAHs (e.g., fluoranthene, pyrene and benz[a]anthracene) are the best recorders of fire, whereas the high molecular weight (HMW) PAHs likely record fire intensity. PAHs appear to resolve some of the issues inherent to other fire proxies, such as secondary deposition of charcoal. This study advances our understanding of how PAHs can be used as markers for fire events and poses new questions regarding the distribution of these compounds in the environment.  相似文献   

10.
Attention has been paid for the levels, sources and health risks of atmospheric aliphatic and polycyclic aromatic hydrocarbons (n-alkanes and PAHs) in remote areas, however, few studies have focused on those in the Tibetan Plateau. In this study, 18 pairs of atmospheric samples were obtained during the period from August 2006 to July 2007 in Lhasa, the capital city of Tibet. Both gas-phase and particulate-phase n-alkanes and PAHs were measured. Concentrations of n-alkanes (gas + particulate phase, 99.1–480.9 ng/m3) and PAHs (gas + particulate phase, 11.4–72.5 ng/m3) in Lhasa are lower than those in many cities. The sources of n-alkanes related to biological and petroleum sources were 67 and 33%, respectively. According to the results of diagnostic ratios and principal component analysis, emission of traffic vehicles was one of the important PAH sources, and sources of benzo(a)pyrene was likely attributed to incense burning. Good simulations were obtained by traffic soot-based model for fluoranthene, pyrene and benzo(a)anthracene, while, wood soot-based model fitted the experimental results of benzo(a)pyrene better. This meant atmospheric fate of PAHs was mainly influenced by the adsorptive partitioning that occurred during traffic and incense burning procedures. In addition, the benzo[a]pyrene-equivalent carcinogenic power (BaPE) in the present study (0.1–1.6 ng/m3) is lower than those in other cities and also the air quality standard of China, suggesting that atmospheric PAHs caused low health risks.  相似文献   

11.
Sediment cores from two locations in Green Bay and two in lake Michigan were analyzed for 12 polycyclic aromatic hydrocarbons (PAHs), loss-on-ignition (LOI),210Pb,137Cs, and7Be to study differences in deposition patterns between the freshwater estuary Green Bay, with several local sources, and the open Lake Michigan, dominated by atmospheric inputs. We found that the remote sites receive relatively less high-molecular weight PAHs such as ideno(1,2,3-cd)pyrene and dibenz(ah)anthracene and are more depleted in anthracene and pyrene. This may be related to a low Henry’s law constant for the high molecular compounds and to selective photo-oxidation of anthracene and pyrene during transport. While sedimentation rates are higher in Green Bay than in the open lake, the PAH levels are generally comparable (0.3–8.5 μg g?1) in the two areas. However, the highest PAH levels are found in a core from Green Bay (GB88G). The two Green Bay cores have total PAH concentration maxima in 1985, which appear to be related to the combustion of petroleum. Also, one Green Bay core (GB88G) and the two from Lake Michigan exhibit PAH maxima in the early 1950s in agreement with observations from other study areas. There is a significant correlation between total PAH and LOI, and thus total organic carbon, for the Green Bay cores, but little or no such correlation for the Lake Michigan cores. This may indicate that PAHs in Green Bay are effectively scavenged by settling detritus.  相似文献   

12.
《Applied Geochemistry》2001,16(14):1611-1619
Biodegradation of polycyclic aromatic hydrocarbon (PAH) was investigated in the whole matrix and in the different aggregate size fractions of a sandy soil contaminated by a mixture of 8 PAHs and incubated at water holding capacity. The distribution of PAHs and of phenanthrene-degrading bacteria were determined in the bulk soil and in 4 size aggregate fractions corresponding to sand, coarse silt, fine silt and clay. The microbial communities able to degrade phenanthrene were detected at a similar level in the different aggregate fractions of the soil before contamination. After soil contamination and incubation, a significant growth of bacteria was observed and their distribution within aggregates was modified. Bacterial communities of phenanthrene-degraders were present in a higher density in the aggregates corresponding to sand (2000–50 μm) and clay (<2 μm). Chemical analysis show that remaining PAHs (low and high molecular weight) were much more concentrated in the fine soil fractions (fine silt and clay) and were present at a very low content in the larger aggregate size fractions. The interactions of well defined aggregates with PAHs and bacteria were also studied using phenanthrene as PAH model substrate and individual aggregates corresponding to sand and clay size fractions. Incubation of sand and clay aggregate fractions enriched with phenanthrene in the presence of a bacterial isolate NAH1 led to the simultaneous solubilization and biodegradation of phenanthrene. Differences in amounts of solubilized phenanthrene between sand and clay aggregate size fractions would be related to difference in adsorption capacities of phenanthrene by clay and sand aggregates.  相似文献   

13.
The present work is the first attempt to compare the data of a comprehensive study of the origin and distribution of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in surface sediments (<63 μm) from 18 sampling stations, 9 from Sundarban of Bangladesh and 9 from Indian counterpart. Σ19PAHs concentration in sediments showed wide variations from 208.3 to 12,993.1 ng g?1 dry weight in Indian Sundarban, whereas 208.4 to 4,687.9 ng g?1 in the case of Bangladesh. Fluoranthene, pyrene, benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(a,h)anthracene were predominant species for both the countries. The PAH diagnostic ratios indicated that the PAHs in sediments from both the countries were of mixed source of hydrocarbons of both petrogenic and pyrolytic origin. According to the numerical effect-based sediment quality guidelines, the levels of PAHs in the Sundarban wetland of Bangladesh and India should not exert adverse biological effects. The TEQ values calculated for samples from the Bangladesh and Indian Sundarban varied from 13.68 to 1,014.75 and 1.31 to 2,451 ng g?1 d.w. with an average of 221.02 and 358.63 ng g?1, respectively. The overall contamination status of PAH was higher in India than Bangladesh.  相似文献   

14.
The distribution and sources of PAHs in soil as well as PAHs profiles have been investigated in areas with anthropogenic pollution in the Niger Delta (Nigeria) such as Warri and Ughelli. PAHs were identified in 21 soil samples (0–10cm upper layer) collected in May, 2003. The typical total PAHs level in Niger Delta soil ranged from 182 ± 112 - to - 433 ±256 íg/kg dw. PAH concentrations in soil samples from Warri Refinery, Tanker Loading point and Ugboko via Rapele oil field were quite high ( the mean ÓPAH concentrations were 433, 402 and 384 íg/kg dry weight respectively). The dominant PAHs in soil samples were pyrene, naphthalene and benzo[k]fluoranthene. The soil total PAHs (PAHtot.) concentration, normalized to organic carbon content (OC), ranged from 11.4 to 47.2 mg PAHtot. /kg OC; and showed that organic matter of the soil samples from Quality Control Centre, Ugelli West is highly contaminated with PAHs and had a value of 47.2 ± 31.2 mg PAHtot./kg OC. Two and three ring aromatic hydrocarbons predominated in soil samples from Ughelli West, Tanker Loading point and Delta Steel Company, which is indicative of petrogenic origin.  相似文献   

15.
An investigation for the analysis of polycyclic aromatic hydrocarbons in airborne particulates using thermal desorption and gas chromatography-mass spectrometry is described. Samples are obtained from ambient air using fibreglass filters and the volatile material from the filter is thermally desorbed to gas chromatograph. A 30 meter capillary column is used to separate the hydrocarbons and eight polyaromatic hydrocarbons are used to test the method and recovery is >95%. The eight polycyclic aromatic hydrocarbons anthracene, phenanthrene, fluoranthrene, pyrene, benzo (a) anthracene, chrysene, benzo (a) pyrene and benzo (e) pyrene were the most abundant PAHs found in the samples of ambient air with current method at Uxbridge-London. Application of the measurement of polycyclic aromatic hydrocarbons in ambient air samples shows that the hydrocarbons trapped in the particle phase to a lesser degree at higher ambient temperature. In conclusion a method has been developed to transfer the PAHs in particle phase from a filter to GC-MS by thermal desorption. A standard mixture of PAHs, when absorbed onto the filter, did lead to strong analyte absorbent interactions by the high percent recovery of the sample.  相似文献   

16.
A currently out-of-service oil distribution and storage station (ODSS) operated in Zacatecas, Mexico, from 1966 to 2000. At present, it is subject to a dismantling process. In 2000, a project, focused mainly on the characterization of the soil contamination in the ODSS, was required, and the convenience of carrying out a health risk assessment (HRA) to determine the required cleaning-up-levels was stated. The study concluded that the ODSS soil was contaminated mainly by gasoline and diesel, showing the presence of methyl-tertbutylether (MTBE), benzene, toluene, ethylbenzene, and xylene (BTEX). Nine of the 16 polycyclic aromatic hydrocarbons (PAHs) identified by the US Environmental Protection Agency (EPA) as priority hydrocarbons were found in the ODSS subsoil. Selected metals were also considered in the evaluation. The geo-accumulation indexes proposed by Muller for Fe, Pb, V, and Zn showed values characteristic of no geo-accumulation. The HRA suggested the reduction of three PAHs, [benzo (a) anthracene, benzo (a) pyrene, and benzo (b) fluoranthene], and vanadium.  相似文献   

17.
The effects of organic matter (80% humic and 15% fulvic acid) and coexistence of heavy metals (Ni, Pb and Zn) on sorption of three polycyclic aromatic hydrocarbons (PAHs)—acenaphthene, fluorene and fluoranthene—were examined for kaolinite, 60% kaolinite?+?40% sand, and 43% kaolinite?+?42% sand?+?15% bentonite. In total 108 batch sorption tests of PAHs were conducted for three types of clay mineral mixtures in six possible combinations of soil organic matter and heavy metal contents from no heavy metals and organic matter added to maximum organic matter added with spiked heavy metals. Results showed that the existence of metals increased the sorption of PAHs onto kaolinite from 4.7% for acenaphthene to 17.9% for fluoranthene. Organic matter in a kaolinite-sand-bentonite matrix could increase PAH sorption by up to 140% for fluoranthene. In all cases, increases were greater for fluoranthene, a larger PAH molecule. Heavy metals coexisting with organic matter led to enhanced sorption of PAHs compared to clay minerals without organic matter. Synergistic effects of organic matter and heavy metals on PAH sorption increments in the mixtures studied were such that the overall sorption could be 10–41% higher than that based on summation of the separate effects of metals and organics.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are a group of aromatic hydrocarbons with high toxicity to human health. PAH emissions from industrial activities have become the primary sources of PAH contamination in Chinese watersheds. Here, we analyzed 10 individual priority PAHs in 120 water samples taken from middle reach of Huaihe River, China. The results show that the PAH levels in studied watershed are significantly lower as compared to other Chinese watersheds, approaching or slightly exceeding the PAH levels in watersheds from selected European and North American countries. We observe rather large variation in spatial and vertical PAH distributions, pointing to PAH inputs from local industrial emissions, and PAH cycle among atmosphere, water and sediment. Individual PAH ratios (i.e., phenanthrene/anthracene and fluorene/pyrene) and principal components analysis suggest a primarily pyrolytic PAH sources (combustion of coal and coke) in water column. Other accompanying PAH sources include emissions from steel industry and gasoline. Total toxic benzo[a]pyrene equivalent of PAHs in studied water column indicates that PAHs in watershed of middle reach of Huaihe River pose limited toxicity to the environment.  相似文献   

19.
Previous studies have suggested that coal from the 1891 shipwreck of a collier off Victoria, BC, Canada is responsible for elevated parent (unsubstituted) PAH concentrations in sediments near deep marine outfalls from Esquimalt and Victoria in the Strait of Juan de Fuca. To resolve this question, we analysed a comprehensive suite of resolved and unresolved complex mixture (UCM) alkanes, tricyclic terpane, hopane and sterane biomarkers, and parent and alkyl polycyclic aromatic hydrocarbons (PAHs) in samples of coal, wastewater and sediments. Composition patterns, principal components analysis (PCA) models and PAH and biomarker ratios all indicate that coal from the collier does not make a dominant contribution to any sediment sample. Mass balance calculations based on the n-C24 content and 24/4 tetracyclic terpane to 26/3R tricyclic terpane ratio in coal provide a particularly good match between predicted and observed alkyl PAH concentrations for sediments with high alkyl naphthalenes and phenanthrene/anthracenes and low UCM, but the predicted coal contribution substantially underestimates the measured parent PAHs for all sediment samples. Methylbenz[a]anthracene/chrysene profiles for sediments with a dominance of parent PAHs are very close to coal tar, with a marked predominance of methylbenz[a]anthracenes and the possible 10-methylbenz[a]anthracene as a major constituent, while the methylchrysenes predominate in coal. Hence, coal from the collier could account for most alkyl PAHs in the sediments, but dredged sediment containing pyrolised coal waste from a former coal gas plant in Victoria Harbour is a more likely source for the samples with elevated parent PAHs. PAH ratios indicate that these sources are superimposed on combustion PAHs introduced by a combination of atmospheric deposition and delivery via stormwater and the outfalls. Parent PAH distributions also suggest that PAHs in wastewater that originate from oils and soot in liquid fossil fuel combustion are dispersed and degraded, while the larger wood char particles (containing PAHs more protected from degradation) settle closer to the outfalls. Overall, results suggest that PAHs have predominant sources in wood combustion, coal and possibly coke, with a likelihood of much lower bioavailability than would be expected from wastewater dominated by oils and soot from vehicle combustion.  相似文献   

20.
Toxic organic compounds in wastewater are serious threats for both human and environment healthy states. This study investigates the potential sources of surface water, sediment and groundwater pollution by polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) as discharged by wastewater into the River of Oued El bey in northeastern Tunisia. Analysis indicates that the concentration of PAHs and PCBs are high in wastewater and vary from 0.37 to 0.83 mg/L and from 0.28 and 1.18 mg/L, respectively. The spatial distribution of PAHs and PCB in surface water showed a variation between 0.37 to 9.91 mg/L and between 0.1 to 0.47 mg/L, respectively. However, the quality of surface water is changed after wastewater evacuation at Oued Tahouna. The determination of PAH and PCB pollutants in groundwater shows a great interest in the development of water resources. The Concentration of these pollutants varying from 0.0204 to 1.93 mg/L and from 0.0052 to 0.196 mg/L, respectively. For PAH, analysis reveals also that naphtelene, fluorene, anthracene and chrysene are the most detected PAHs compounds in water and sediment samples while benzo[b]fluoranthene and benzo[a]pyrene are less present and in trace level. Higher concentrations of PAHs and PCBs are found in samples taken close to industrial areas of Bouargoub and Soliman, and wastewater discharge locations in Soliman. Analysis of the spatial distribution of PAHs and PCBs clearly link their higher concentration in water and sediments to wastewater and manufacturing discharges in the study area. In surface sediment, the organic pollutants are present. The cluster analysis for organic pollutants in different state and different matrix highlight a relationship between the wastewater evacuation and the water qualities which confirmed the direct response of the pollution sources on the surface water and groundwater organic pollution quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号