首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanges play a key role in the interpretation of orogenic belts, including those that have experienced deformation and metamorphism during continental collision. This is exemplified by a Palaeozoic tectonic-sedimentary melange (part of the Konya complex) that is exposed beneath a regionally metamorphosed carbonate platform near the city of Konya in central Anatolia. The Konya complex as a whole comprises three units: a dismembered, latest Silurian–Early Carboniferous carbonate platform, a Carboniferous melange made up of sedimentary and igneous blocks in a sedimentary matrix (also known as the Hal?c? Group or S?zma Group), and an overlying Volcanic-sedimentary Unit (earliest Permian?). The Palaeozoic carbonates accumulated on a subsiding carbonate platform that bordered the northern margin of Gondwana, perhaps as an off-margin unit. The matrix of the melange was mainly deposited as turbidites, debris flows and background terrigenous muds. Petrographic evidence shows that the clastic sediments were mostly derived from granitic and psammitic/pelitic metamorphic rocks, typical of upper continental crust. Both extension- and contraction-related origins of the melange can be considered. However, we interpret the melange as a Carboniferous subduction complex that formed along the northern margin of Gondwana, related to partial closure of Palaeotethys. Blocks and slices of Upper Palaeozoic radiolarian chert, basic igneous rocks and shallow-water carbonates were accreted and locally reworked by gravity processes. Large (up to km-sized) blocks and slices of shallow-water limestone were emplaced in response to collision of the Palaeozoic Carbonate Platform with the subduction zone. The overlying Volcanic-sedimentary Unit (earliest Permian?) comprises alkaline lava flows, interbedded with volcaniclastic debris flows and turbidites, volcanogenic shales and tuff. The complex as a whole is overlain by shallow-water, mixed carbonate–siliciclastic sediments of mainly Late Permian age that accumulated on a regional-scale shelf adjacent to Gondwana. Successions pass transitionally into Lower Triassic rift-related shallow-water carbonates and terrigenous sandstones in the southwest of the area. In contrast, Triassic sediments in the southeast overlie the melange unconformably and pass upwards from non-marine clastic sediments into shallow-marine calcareous sediments of Mid-Triassic age, marking the base of a regional Mesozoic carbonate platform. During the latest Cretaceous–Early Cenozoic the entire assemblage subducted northwards and underwent high pressure/low temperature metamorphism and polyphase folding as a part of the regional Anatolide unit.  相似文献   

2.
The Jinshajiang orogenic belt (JOB) of southwestern China, located along the eastern margin of the Himalayan–Tibetan orogen, includes a collage of continental blocks joined by Paleozoic ophiolitic sutures and Permian volcanic arcs. Three major tectonic stages are recognized based on the volcanic–sedimentary sequence and geochemistry of volcanic rocks in the belt. Westward subduction of the Paleozoic Jinshajiang oceanic plate at the end of Permian resulted in the formation of the Chubarong–Dongzhulin intra-oceanic arc and Jamda–Weixi volcanic arc on the eastern margin of the Changdu continental block. Collision between the volcanic arcs and the Yangtze continent block during Early–Middle Triassic caused the closing of the Jinshajiang oceanic basin and the eruption of high-Si and -Al potassic rhyolitic rocks along the Permian volcanic arc. Slab breakoff or mountain-root delamination under this orogenic belt led to post-collisional crustal extension at the end of the Triassic, forming a series of rift basins on this continental margin arc. Significant potential for VHMS deposits occurs in the submarine volcanic districts of the JOB. Mesozoic VHMS deposits occur in the post-collisional extension environment and cluster in the Late Triassic rift basins.  相似文献   

3.
During Late Palaeozoic time a wide ocean, known as Palaeotethys, separated the future Eurasian and African continents. This ocean closed in Europe in the west during the Variscan orogeny, whereas in Asia further east it remained open and evolved into the Mesozoic Tethys, only finally closing during Late Cretaceous–Early Cenozoic.Three Upper Palaeozoic lithological assemblages, the Chios Melange (on the Aegean Greek island), the Karaburun Melange (westernmost Aegean Turkey) and the Teke Dere Unit (Lycian Nappes, SW Turkey) provide critical information concerning sedimentary and tectonic processes during closure of Palaeotethys. The Chios and Karaburun melanges in the west are mainly terrigenous turbidites with blocks and dismembered sheets of Silurian–Upper Carboniferous platform carbonate rocks (shallow-water and slope facies) and poorly dated volcanic rocks. The Teke Dere Unit to the southeast begins with alkaline, within-plate-type volcanics, depositionally overlain by Upper Carboniferous shallow-water carbonates. This intact succession is overlain by a tectonic slice complex comprising sandstone turbidites that are intersliced with shallow-water, slope and deep-sea sediments (locally dated as Early Carboniferous). Sandstone petrography and published detrital mineral dating imply derivation from units affected by the Panafrican (Cadomian) and Variscan orogenies.All three units are interpreted as parts of subduction complexes in which pervasive shear zones separate component parts. Silurian–Lower Carboniferous black cherts (lydites) and slope carbonates accreted in a subduction trench where sandstone turbidites accumulated. Some blocks retain primary depositional contacts, showing that gravitational processes contributed to formation of the melange. Detached blocks of Upper Palaeozoic shallow-water carbonates (e.g. Chios) are commonly mantled by conglomerates, which include water-worn clasts of black chert. The carbonate blocks are restored as one, or several, carbonate platforms that collided with an active margin, fragmenting into elongate blocks that slid into a subduction trench. This material was tectonically accreted at shallow levels within a subduction complex, resulting in layer-parallel extension, shearing and slicing. The accretion mainly took place during Late Carboniferous time.Alternative sedimentary-tectonic models are considered in which the timing and extent of closure of Palaeotethys differ, and in which subduction was either northwards towards Eurasia, or southwards towards Gondwana (or both). Terrane displacement is also an option. A similar (but metamorphosed) accretionary unit, the Konya Complex, occurs hundreds of kilometres further east. All of these units appear to have been assembled along the northern margin of Gondwana by Permian time, followed by deposition of overlying Tauride-type carbonate platforms. Northward subduction of Palaeotethys beneath Eurasia is commonly proposed. However, the accretionary units studied here are more easily explained by southward subduction towards Gondwana. Palaeotethys was possibly consumed by long-lived (Late Palaeozoic) northward subduction beneath Eurasia, coupled with more short-lived (Late Carboniferous) southward subduction near Gondwana, during or soon after closure of Palaeotethys in the Balkan region to the west.  相似文献   

4.
东北及邻区晚古生界及其相关地层间的接触关系含有丰富的大地构造信息,本文系统梳理了这些资料,用以阐述佳-蒙地块的形成与演化。佳-蒙地块南缘的西别河组、北缘的卧都河组及东缘的黑台组等晚志留世—早泥盆世地层底部均发育不整合(或非整合),揭示了东北地区曾经历了一次十分重要的大地构造运动,标志着佳-蒙地块的形成。区内泥盆纪—石炭纪和石炭纪—二叠纪地层之间多为整合接触,说明这一时期佳-蒙地块处于稳定沉降接受沉积阶段。佳-蒙地块南缘晚二叠世林西组底部的平行不整合界面及其上部的磨拉石建造,以及中—晚二叠世地层序列由海相向陆相的转化,表明林西组处于前陆盆地的沉积环境,标志着佳-蒙地块与华北板块发生碰撞拼合。佳-蒙地块南缘早三叠世卢家屯组底部的不整合及卢家屯组下部砾岩所具有的磨拉石建造特征,说明碰撞造山作用仍在持续进行,属于递进造山作用。晚三叠世大酱缸组底部的不整合,说明造山作用已经完成,佳-蒙地块独立发展的历程结束。  相似文献   

5.
选取青海南部治多-杂多地区石炭纪-三叠纪的砂岩、粉砂岩样品,进行主量元素地球化学分析,利用分析结果判别物源区大地构造背景,探讨北羌塘盆地的性质及演化。研究结果表明:北羌塘中段的治多-杂多地区物源区大地构造背景早石炭世为被动大陆边缘;早中二叠世为被动大陆边缘、活动大陆边缘和大陆岛弧;晚三叠世为被动大陆边缘、活动大陆边缘和大陆岛弧。结合地层学、沉积学和岩石学,治多-杂多地区的沉积盆地经历了早石炭世被动陆缘克拉通盆地-早中二叠世裂陷盆地和早中三叠世被动边缘克拉通盆地-晚三叠世弧后前陆盆地的两个演化旋回,体现了金沙江缝合带和甘孜-理塘缝合带成生发展在研究区内的沉积响应。  相似文献   

6.
南祁连盆地在晚三叠世时期处于陆相沉积,上三叠统阿塔寺组碎屑岩十分发育。盆地三叠系砂岩的岩性及岩相特征与二叠系非常相似,但是源岩构造背景、物质组成及物质来源与二叠系有所差异。根据地球化学主量元素、微量元素分析结果,上三叠统阿塔寺组源岩构造背景活动性较强,以活动性较强的大陆岛弧及活动大陆边缘为主,源岩物质组成以长英质火成岩为主。结合区域地质构造背景判断,南祁连盆地上三叠统阿塔寺组沉积物源区以北物源为主,以南物源为辅,中祁连的前震旦系及下古生界变质结晶岩系及花岗岩为其主要物源。  相似文献   

7.
王松  李双应  杨栋栋  何刚  赵大千 《岩石学报》2012,28(8):2453-2465
本文通过对天山南缘石炭系-三叠系碎屑岩岩石学特征和地球化学特征的分析,揭示了研究区石炭系-三叠系碎屑岩的物质组分特征及其物源区的大地构造背景.碎屑岩的岩石学、地球化学分析表明,天山南缘石炭系、三叠系砂岩成分成熟度和结构成熟度均不高,杂基含量较高,从石炭系至三叠系砂岩不稳定组分依次增加.石炭系、二叠系具有相似的稀土元素含量特征,三叠系稀土元素含量明显低于石炭系和二叠系,石炭系-三叠系轻、重稀土元素分馏程度依次减弱,La/Th、La/Y 比值依次增大,Th/U比值减小,来自再旋回的物质依次增多.综合碎屑组分、常量元素、稀土元素及微量元素特征的判别,天山南缘石炭系物源区构造背景为既有指示大陆岛孤、活动大陆边缘的证据,也有指示为被动大陆边缘,二叠系物源区示为大陆岛弧,三叠系物源区示为大陆岛弧和含有古老沉积岩的陆块.对比石炭系、二叠系及三叠系物源区的大地构造属性,石炭系物源区示有多种属性,而二叠系、三叠系则相对较为单一,这可能与中天山-伊犁地块和塔里木陆块的碰撞有关.  相似文献   

8.
《Gondwana Research》2014,25(3-4):1237-1266
The Cimmerian orogen resulted from the collision and accretion of several Perigondwanan blocks to the southern margin of Eurasia between the Late Triassic and Early Jurassic, following the closure of the Palaeotethys ocean. Remnants of this orogen discontinuously crop out in N (Alborz range) and NE Iran (Mashhad–Fariman area) below the syn- to post-collisional clastic successions of the Shemshak Group (Upper Triassic–Middle Jurassic) and the Kashaf Rud Formation (Bajocian). In NE Iran rock associations exposed in the Binalood Mountains, Fariman and Darreh Anjir areas include mafic–ultramafic intrusive rocks, basalts, silicoclastic turbidites and minor limestones, which have been interpreted in the past as ophiolitic remnants of the Palaeotethys ocean. Original stratigraphic, structural, geochemical and geochronological data, described in this paper, suggest a different interpretation. The volcano-sedimentary units of Fariman and Darreh Anjir complexes where deposited during Permian in a subsiding basin were siliciclastic turbidites, derived from the erosion of a magmatic arc and its basement, interfinger with carbonates and basaltic lava flows with both transitional and calc-alkaline affinity. The coexistence of magmatic rocks with different geochemical signature and the sedimentary evolution of the basin can be related to a supra-subduction setting, possibly represented by a fault-controlled intra-arc basin. The Fariman and the Darreh Anjir complexes are thus interpreted as remnants of a magmatic arc and related basins developed at the southern Eurasia margin, on top of the north-directed Palaeotethys subduction zone long before the collision of Iran with Eurasia. They were later involved in the Cimmerian collision during the Triassic. New radiometric ages obtained on I-type post-collisional granitoids postdating the collision-related deformational structures suggest that the suture zone closed before mid-Norian times. Deformation propagated later northward into the Turan domain involving the Triassic successions of the Aghdarband region.  相似文献   

9.
The closure of Palaeotethys that led to the collision of the Cimmerian blocks with the southern Eurasian margin causing the Eo-Cimmerian orogeny during the Early Mesozoic is still controversially discussed. The Triassic Nakhlak Group in Central Iran is a key sedimentary succession for better understanding the closure of Palaeotethys and the Eo-Cimmerian orogeny in the Middle East. The Nakhlak Group is composed of the Alam (Olenekian to Middle Anisian), Baqoroq (?Upper Anisian to Middle Ladinian) and Ashin (Upper Ladinian to ?Carnian) formations, which consist mainly of volcaniclastic sandstones, mixed siliciclastic conglomerates, and marine carbonates. Here we present for the first time detrital zircon UPb ages from the Nakhlak Group to unravel its provenance and constrain its palaeotectonic position within the Palaeotethyan realm. Most detrital zircons from the Nakhlak Group are euhedral and subhedral with Permian–Triassic ages (ca. 280–240 Ma) suggesting sediment supply from Permian–Triassic magmatic rocks of the Silk Road Arc. Minor zircon populations show pre-Permian Palaeozoic ages, with age peaks at ca. 320 Ma and 480 Ma, which are probably derived from the basement on which the magmatic arc developed. Neoproterozoic–latest Mesoproterozoic (ca. 550–1100 Ma) and Palaeoproterozoic (ca. 1800–2200 Ma) zircon grains are anhedral (rounded). The latter are prominent in the upper Baqoroq Formation (Middle Ladinian) suggesting recycling of older sedimentary rocks. Sandstone petrography points toward an additional metamorphic provenance for this formation. This short-lived provenance change can be explained by tectonic uplift in the source area that led to erosion of metamorphosed rocks with a northeast Gondwanan affinity. It clearly indicates that northeast Gondwana-derived continental fragments likely belonging to the Cimmerian blocks already arrived at the southern Eurasian margin in pre-Late Triassic time. Current palaeotectonic models of the closure of Palaeotethys and the Eo-Cimmerian orogeny in the Middle East during the Triassic may need to be revised.  相似文献   

10.
宜洛盆地晚二叠世—三叠纪沉积充填演化是秦岭造山带与华北克拉通共同作用的结果,物源分析是揭示盆山耦合的重要手段之一。论文采用沉积地球化学分析的方法对宜洛盆地上二叠统—下三叠统泥质岩地球化学特征与物源进行了研究,结果表明:宜洛盆地泥质岩稀土元素球粒陨石标准化曲线显示轻稀土元素富集,重稀土亏损,为右倾式曲线,元素Eu中度负异常,元素Ce轻微亏损,符合上地壳稀土元素分布特征。泥质岩源区源岩属性判别图解显示,宜洛盆地物源以长英质岩为主,主要来自于上地壳,孙家沟组后期有少量古老基底杂岩混入。构造背景判别图解显示,研究区物源经历了被动大陆边缘为主(孙家沟组下段)—活动大陆边缘为主(孙家沟组上段和刘家沟组)—大陆岛弧为主(和尚沟组)的演化;华北克拉通和秦岭造山带是宜洛盆地重要物源区,华北地台北部内蒙古隆起可能提供了一定量的物源。孙家沟组早期以克拉通内部物源为主,孙家沟组土门段之后秦岭微地块物源供给明显,体现了华北克拉通南缘基底隆升,由被动大陆边缘向秦岭初始"弧-陆"碰撞隆升的构造演化过程。这对深入揭示南华北盆地与周围造山带之间的耦合关系具有重要意义。  相似文献   

11.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   

12.
川滇藏交界区二叠纪—早三叠世的两套弧火山岩   总被引:8,自引:0,他引:8       下载免费PDF全文
川滇藏交界区属三江印支造山带中段,地质构造十分复杂.文章据最近获得的岩石化学及野外调查资料分析了该区古特提斯活动大陆边缘的两套弧火山岩的特征,结果表明:早二叠世的吉东龙组是碧土洋盆向东俯冲的记录,当时的活动大陆边缘属西太平洋岛弧型;晚二叠-早三叠世的夏牙村组-马拉松多组是金沙江洋盆(南段)向西消减的证据,当时的活动大陆边缘接近安第斯型.在此基础上讨论它们在恢复古特提斯演化的时空制约中的意义.  相似文献   

13.
The northern margin of the Alxa block is the junction of a tectonic units. Four first-order tectonic units are distinguished: 1. the Yagan structural zone characteristic of an immature island arc; 2. the Zhusileng-Hangwula structural zone, which was a passive continental margin in the Early Palaeozoic and was transformed into an active continental margin in the Late Palaeozoic;3. the Shalazha structural zone characteristic of a mature island arc; 4. the Nuru-Langshan structural zone, which was a Proterozoic orogenic belt and later evolved into an extensional transtional crust in the Palaeozoic. The above-mentioned tectonic units differ remarkably in sedimentary formations, magmatic rock associations, metamorphism and geochemistry and are bounded by faults between one another.  相似文献   

14.
In Central Iran, the mixed siliciclastic?carbonate Nakhlak Group of Triassic age is commonly seen to have a Cimmerian affinity, although it shows considerable resemblances with the Triassic Aghdarband Group in far northeastern Iran, east of Kopeh-Dagh area, with Eurasian affinity. The Nakhlak Group is composed of the Alam (Late Olenekian?Anisian), Baqoroq (Late Anisian??Early Ladinian), and Ashin (Ladinian??Early Carnian) formations consisting mainly of volcanoclastic sandstone and shale and fossiliferous limestone. The Baqoroq Formation contains also metamorphic detritus. Sandstone petrofacies reflect the detrital evolution from active volcanism to growing orogen and again active volcanism. Textural and modal analyses of volcanic lithic fragments from the Alam Formation reflect the eruption style and magma composition of a felsic to intermediate syn-sedimentary arc activity. The detrital modes of the Baqoroq Formation sediments suggest a recycled orogenic source followed by arc activity in a remnant fore-arc basin. The sandstone samples from the Ashin Formation demonstrate a continuity of felsic to intermediate arc activity. Major and trace element concentrations of the Nakhlak Group clastic samples support sediment supply from first-cycle material and felsic magmatic arc input. The enrichment in LREE, the negative Eu anomalies, and the flat HREE patterns indicate origination from the old upper continental crust and young arc material. The chemical index of alteration (CIA ~51–70 for sandstone and 64–76 for shale samples) indicates medium degrees of chemical weathering at the source. Petrographical and geochemical evidence together with facies analysis constructed the following depositional conditions for the Nakhlak Group sediments: In the Olenekian, a fore-arc shallow to deep marine depositional basin developed that later was filled by recycled and arc-related detritus and changed into a continental basin in the Anisian. Ladinian extension let to a deepening of the basin. With respect to the similarities between the Nakhlak and Aghdarband (NE Iran) groups and unusual present-day position of the Nakhlak Group with no stratigraphic connection to the surrounding area, the development of first a fore-arc basin and later change into a back-arc depositional basin in close relation with the Aghdarband basin at the southern Eurasian active margin in the Triassic are here proposed. Understanding the basin development recorded in the Nakhlak Group provides constraints on the closure history of Palaeotethys and of the tectonic evolution of early Mesozoic basins at the southern Eurasian margin before the Cimmerian Orogeny.  相似文献   

15.
The Chinese Tien Shan range is a Palaeozoic orogenic belt which contains two collision zones. The older, southern collision accreted a north-facing passive continental margin on the north side of the Tarim Block to an active continental margin on the south side of an elongate continental tract, the Central Tien Shan. Collision occurred along the Qinbulak-Qawabulak Fault (Southern Tien Shan suture). The time of the collision is poorly constrained, but was probably in in the Late Devonian-Early Carboniferous. We propose this age because of a major disconformity at this time along the north side of the Tarim Block, and because the Youshugou ophiolite is imbricated with Middle Devonian sediments. A younger, probably Late Carboniferous-Early Permian collision along the North Tien Shan Fault (Northern Tien Shan suture) accreted the northern side of the Central Tien Shan to an island arc which lay to its north, the North Tien Shan arc. This collision is bracketed by the Middle Carboniferous termination of arc magmatism and the appearance of Late Carboniferous or Early Permian elastics in a foreland basin developed over the extinct arc. Thrust sheets generated by the collision are proposed as the tectonic load responsible for the subsidence of this basin. Post-collisional, but Palaeozoic, dextral shear occurred along the northern suture zone, this was accompanied by the intrusion of basic and acidic magmas in the Central Tien Shan. Late Palaeozoic basic igneous rocks from all three lithospheric blocks represented in the Tien Shan possess chemical characteristics associated with generation in supra-subduction zone environments, even though many post-date one or both collisions. Rocks from each block also possess distinctive trace element chemistries, which supports the three-fold structural division of the orogenic belt. It is unclear whether the chemical differences represent different source characteristics, or are due to different episodes of magmatism being juxtaposed by later dextral strike-slip fault motions. Because the southern collision zone in the Tien Shan is the older of the two, the Tarim Block sensu stricto collided not with the Eurasian landmass, but with a continental block which was itself separated from Eurasia by at least one ocean. The destruction of this ocean in Late Carboniferous-Early Permian times represented the final elimination of all oceanic basins from this part of central Asia.  相似文献   

16.
东天山大南湖岛弧带石炭纪岩石地层与构造演化   总被引:5,自引:0,他引:5  
详细的地质解剖工作表明,东天山地区大南湖岛弧带石炭纪出露4套岩石地层组合,即早石炭世小热泉子组火山岩、晚石炭世底坎儿组碎屑岩和碳酸盐岩、晚石炭世企鹅山组火山岩、晚石炭世脐山组碎屑岩夹碳酸盐岩。根据其岩石组合、岩石地球化学、生物化石、同位素资料以及彼此的产出关系,认为这4套岩石地层组合的沉积环境分别为岛弧、残余海盆、岛弧和弧后盆地。结合区域资料重塑了大南湖岛弧带晚古生代的构造格架及演化模式。早、晚石炭世的4套岩石地层组合并置体现了东天山的复杂增生过程。  相似文献   

17.
Abstract The northern margin of the Alxa block is the junction of a tectonic units. Four first—order tectonic units are distinguished: 1. the Yagan structural zone characteristic of an immature island arc; 2. the Zhusileng—Hangwula structural zone, which was a passive continental margin in the Early Palaeozoic and was transformed into an active continental margin in the Late Palaeozoic; 3. the Shalazha structural zone characteristic of a mature island arc; 4. the Nuru—Langshan structural zone, which was a Proterozoic orogenic belt and later evolved into an extensional transitional crust in the Palaeozoic. The above—mentioned tectonic units differ remarkably in sedimentary formations, magmatic rock associations, metamorphism and geochemistry and are bounded by faults between one another.  相似文献   

18.
东昆仑地区发育一套显生宙碎屑岩地层,包括下寒武统沙松乌拉组、中—上奥陶统纳赤台群、上石炭统—下二叠统浩特洛哇组、下三叠统洪水川组、中三叠统希里科特组以及上三叠统八宝山组。研究区砂岩的CIA值反映沙松乌拉组砂岩源区化学风化程度较高,其余各组砂岩源区化学风化程度较低。主量和微量元素研究结果表明各组砂岩源区以长英质岩石为主,包含少量中性成分。La、Ce、Th、U、∑REE含量和La/Sc、Th/Sc、Sc/Cr、La/Y比值指示沙松乌拉组和纳赤台群砂岩沉积环境为大陆岛弧或活动大陆边缘,浩特洛哇组砂岩形成于被动大陆边缘环境,洪水川组砂岩沉积环境为活动大陆边缘,希里科特组砂岩的微量元素含量及其比值接近于活动大陆边缘和被动大陆边缘,八宝山组砂岩沉积环境为活动大陆边缘。综合分析认为沙松乌拉组和纳赤台群砂岩形成于原特提斯洋俯冲阶段,浩特洛哇组砂岩形成于古特提斯洋持续扩张阶段,洪水川组砂岩形成于古特提斯洋俯冲阶段,希里科特组砂岩形成于陆(弧)陆初始碰撞阶段,八宝山组砂岩形成于陆陆全面碰撞—碰撞后阶段。  相似文献   

19.
《Comptes Rendus Geoscience》2008,340(2-3):139-150
The Qinling–Dabie Belt represents the boundary between the North and South China blocks (NCB, SCB, respectively), where ultrahigh-pressure (UHP) rocks are widespread. A structural study in eastern Qinling and zircon LA ICPMS dating of the migmatites that form the core of the Central Qinling Unit allows us to argue that continental collision occurred in the Silurian, before 400 Ma. In the Late Palaeozoic, from the Devonian to the Permian, the northern margin of SCB experienced a continental rifting. From the Late Permian to Middle Triassic, northward continental subduction of SCB is responsible for the development of a high-pressure metamorphism. The age of the UHP metamorphism remains unsettled yet. A two-time genesis, Early Palaeozoic and Early Triassic, is often preferred, but a single Palaeozoic age followed by a Triassic resetting cannot be ruled out.  相似文献   

20.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号