首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
郭华明  张波  李媛  魏亮  张扬 《地学前缘》2010,17(6):59-66
高砷地下水是世界范围内的一个重大环境问题。尽管已有工作在高砷地下水的地球化学特征、形成条件和富砷机理等方面取得了很大进展,但其稀土元素(REE)含量及分异特征却一直不清楚,这就限制了稀土方法在评价此类地下水中的应用。在对内蒙古河套盆地地下水样品进行现场测试、实验室分析检测的基础上,我们发现高砷地下水的REE浓度较低。对地下水REE浓度依照北美页岩平均组分(NASC)进行归一化处理后,我们发现大部分水样富集重稀土元素(HREEs),而贫化轻稀土元素(LREEs)。HREEs的富集与地下水中碳酸根对于REE的络合作用密切相关,而弱碱性环境下REE的再吸附可导致LREEs的贫化。所有地下水样表现为Eu正异常,其中大部分表现为Ce负异常。Eu正异常似乎与铁锰氧化物的还原性溶解和解吸附有关,地下水As浓度随[Eu]NASC的升高而升高。从某种意义上说,还原性含水系统中Eu正异常的程度也许可以反映地下水As的富集程度。  相似文献   

2.
江汉平原被确认为我国南方新的饮水型砷中毒病区,目前对于江汉平原高砷地下水的成因机理研究还有待完善.综合运用水文地球化学分析与PHREEQC地球化学模拟计算,分析了地下水和沉积物中REE分异特征及其沿地下水流向形态变化规律.江汉平原地下水REE含量为0.032~0.843 μg/L,富集LREE,具显著Eu正异常,且地下水中Eu异常与As含量呈正相关关系.地下水中REE形态主要以LnCO3+及Ln(CO3)2-为主,沿地下水流向LnCO3+降低、Ln(CO3)22-升高.地下水REE浓度分布受到HCO3-的络合作用及Fe氧化物矿物的还原性解吸附过程控制,径流途径中继承沉积物矿物的REE配分模式及Fe氧化物矿物对LREE的优先解吸附可能是地下水富集LREE的原因,并且沿流向上REE形态分布受到pH控制.研究区中Eu含量及Eu正异常对地下水As富集程度具有一定的指示意义.   相似文献   

3.
中国东部地带表土稀土元素的地球化学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
对中国东部从黑龙江省到海南省的纵向大断面50个表土样品的稀土元素(REE)含量进行了测定,结果显示其平均含量高于中国土壤和世界土壤的平均值;其稀土元素组成特点表现为轻稀土(LREE)富集,重稀土(HREE)亏损,Eu的负异常和Ce的正异常;未发现稀土元素总量∑REE和轻重稀土比值∑LREE/∑HREE随纬度或年均温度、年降水量有明显的地带性规律变化;δCe值的分布特征显示在气候达到南亚热带-北热带地区的湿热程度及风化强度时,表土才会出现显著的Ce正异常;在Ce/Eu对Eu/Sm图解上不同母岩类型的表土参数差异明显,尤其是玄武岩发育的表土与中酸性岩石和沉积岩发育的表土之间具有明显差异。本研究表明,中国东部表土的稀土元素分布特征没有明确的气候带示踪意义,而主要具有成土母质类型示踪意义;δCe值的显著正异常可以示踪南亚热带-热带气候;由于影响因素复杂,各种特征参数的细微变化对沉积物成因、物源区以及区域气候的指示意义尚待积累更多的数据并参考其他环境指标才能做出正确判断。  相似文献   

4.
青海省五龙沟矿区金矿化的石英稀土元素地球化学指示   总被引:2,自引:1,他引:2  
五龙沟金矿区硅化石英的稀土元素地球化学特征可较好地反映金矿化程度和多期次成矿特性,金矿化愈好,则Eu/Eu^*,Ce/Ce^*,LREE/HREE和La/Yb值愈高,稀土元素含量与金矿化没有明显的相关性,但∑REE值以及配分模式可指示不同的矿化期,矿化作用从早到晚,∑REE值逐渐升高。  相似文献   

5.
王冠  杜谷  刘书生  石洪召  张林奎  任静 《岩矿测试》2012,31(6):1050-1057
通过建立的高分辨电感耦合等离子体质谱测定稀土元素( REEs)的分析方法,准确测定出麻栗坡南秧田白钨矿床两类不同矿体的围岩和矿石中稀土元素的含量,方法的灵敏度高,检出限低,精密度和准确度均非常满意.通过对稀土元素地球化学特征的研究,表明存在两种不同成因的白钨矿,一为与围岩同时沉积形成的白钨矿,在变质作用条件下形成了矽卡岩型白钨矿;二为后期热液携带来的具有较高稀土含量的石英脉型白钨矿.前者具有轻稀土元素富集、重稀土亏损、中等程度的Eu、Ce负异常等特征,与沉积环境关系密切,推测是海底火山喷发(喷流)沉积变质作用的产物;后者具有较低的稀土总量∑REEs以及显著的Eu正异常特征,表现出较高的稀土分馏特性,为后期热液作用形成,并对先期矿体有叠加改造作用,使矿化更加富集.  相似文献   

6.
贵州镇宁重晶石矿中硅质岩稀土元素地球化学研究   总被引:1,自引:0,他引:1  
通过对镇宁泥盆系重晶石矿中硅质岩稀土元素地球化学特征研究,发现硅质岩稀土总量较低,轻稀土富集,δCe呈弱的负异常,δEu呈负异常到正异常,{La/Sm}N和{Gd/Yb}N值表明轻稀土分异强;通过∑REE、Ce/Ce*、Eu/Eu*、{La/Ce}N和{La/Lu}N参数综合分析,硅质岩沉积成岩过程中有明显的热水参与,...  相似文献   

7.
大同盆地是典型的干旱-半干旱内陆盆地,盆地中部地下水碘含量异常,对当地饮用水安全造成了严重威胁.对盆地高碘地下水分布区沉积物组成及稀土元素(REE) 进行了地球化学研究,结果表明,地下水系统呈弱碱性(pH值为7.18~9.64) 的偏还原环境,沉积物多为Ce正常或轻微负异常及Eu负异常;沉积物中碘含量为0~1.78×10-6;ΣREE含量较高,ΣLREE/ΣHREE比值为2.79~4.14,即富集轻稀土元素(LREE) 而亏损重稀土元素(HREE).ΣREE与碘含量呈负相关关系,虽然铁氧化物/氢氧化物矿物的还原性溶解可导致二者的释放,但由于沉积物有机质产生的低结晶矿物对碘的强吸附性,使沉积物中碘含量较高;弱碱性环境中REE的再吸附过程会导致沉积物中富集LREE;沉积物中碘含量与氧化还原敏感组分TOC、U、V及[Eu]N的关系也表明,地下水系统的氧化还原条件及有机质含量是影响碘富集的重要因素.   相似文献   

8.
稀土的开发和广泛应用使得人们倍加关注其在环境中的分布及其环境地球化学行为。赣江作为鄱阳湖流域五大入湖河之一,发源于稀土资源富集的赣南地区,而其下游水体及周边地下水中稀土元素的含量和分异特征目前尚不完全清楚。以赣江北支水体及沉积物为研究对象,开展了稀土元素地球化学研究。结果表明,赣江北支水体中稀土元素总量在地表水中为230~1 146 ng/L(均值458.85 ng/L),地下水中为284~1 498 ng/L(均值634.94 ng/L),沉积物中稀土元素总量为177.9~270.7 mg/kg(均值226.99 mg/kg)。PHREEQC模拟计算表明,水体中的稀土元素主要以碳酸根络合物(REEC03+)的形式存在。地表水和地下水总体上均表现为重稀土元素相较于轻、中稀土元素富集,沉积物未表现出明显的富集特性;水体具有Ce、Eu负异常特点,而沉积物表现为Ce正异常和Eu负异常,指示氧化还原环境和水岩相互作用对稀土元素在水-沉积物系统中迁移转化的影响。地下水中稀土元素的含量沿流向具有上升趋势,而水体中重稀土元素的富集程度不断减弱,同时碳酸根络合物(REEC03+)的占比不断降低,反映水体中稀土元素的含量受到pH、胶体吸附、络合作用以及地下水-地表水相互作用的影响。水体中重稀土元素的富集受到碳酸根络合反应的影响,Ce、Eu负异常与Ce氧化沉淀和母岩特性相关。Gd异常值表明,研究区中下游水体中的Gd元素受到人为输入的影响。  相似文献   

9.
贵州织金新华含稀土磷矿床稀土元素地球化学研究   总被引:8,自引:0,他引:8  
对贵州织金新华含稀土磷矿床进行的稀土元素及微量元素分析结果表明,磷块岩中普遍富集稀土元素,含稀土总量∑REE较高,并富集Y、La、Nd等重稀土及轻稀土元素.LREE/HREE比值较高,但低于上部围岩之值.含稀土磷块岩普遍具Ce的负异常,显示其对源区的继承性,也指示成磷环境处于氧化程度相对较高状态.稀土元素球粒陨石标准化模式曲线、北美页岩标准化模式曲线、Ce元素异常、LREE/HREE比值、微量元素特征及岩石矿物特征表明,织金新华含稀土磷矿床具以正常海相生物-化学沉积等为主伴有海相热水沉积混合成因的特征.文中讨论了含稀土磷块岩氧化矿石中稀土元素的迁移富集规律及特征.  相似文献   

10.
为研究采矿对土壤-植被REE生物地球化学特征的影响,采集大宝山多金属矿区及背景区土壤及优势植物芒萁、马尾松叶片,测量REE含量.对比分析样品中REE分布模式、∑REE、δEu、δCe及四重效应等地球化学特征.结果表明:受采矿活动影响,矿区土壤REE含量均值达284.99 mg/kg,显著高于背景区,且表土层REE含量明显高于心土层;相对于背景区,矿区土壤和植被轻重稀土分馏更弱;研究区土壤和植被都为Eu亏损,大都为Ce富集,马尾松与土壤REE含量呈正相关,REE富集植物芒萁在背景区富集系数反而更高;矿区环境抑制植物对REE正常的迁移和分异,对植被生长不利,植被REE分布分异特征是其对生长环境的反映和适应.   相似文献   

11.
Soil secondary minerals are important scavengers of rare earth elements (REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs (La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs (LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs (HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs. The substantial fractions of REEs in soils extracted by oxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile (10 %–30 %), which were similar to the mass fraction of Fe (10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.  相似文献   

12.
《Applied Geochemistry》1998,13(4):451-462
Water, suspended matter, and sediment samples were taken from 8 locations along the Yangtze River in 1992. The concentration and speciation (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and residual forms) of rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) were determined by instrumental neutron activation analysis (INAA).The contents of the soluble fraction of REEs in the river are low, and REEs mainly reside in particulate form. In the particles, the chondrite-normalized distribution patterns show significant LREE enrichment and Eu-depletion. While normalized to shales, both sediments and suspended matter samples show relative LREE enrichment and HREE depletion. REEs are relatively enriched in fine-grained fractions of the sediments.The speciation characteristics of REEs in the sediments and suspended matter are very similar. The amount of the five forms follows the order: residual>>bound to organic matter∼bound to Fe–Mn oxides>bound to carbonates>>exchangeable. About 65 to 85% of REEs in the particles exist in the residual form, and the exchangeable form is very low. High proportions of residual REEs reveal that REEs in sediments and suspended matter are controlled by their abundances in the earth's crust. Carbonate, Fe–Mn oxide and organic fractions of REEs in sediments account for 2.4–6.9%, 5.2–11.1%, and 7.3–14.0% of the total contents respectively. They are similar to those in the suspended matter. This shows that carbonates, Fe–Mn oxides and organic matter play important roles during the particle-water interaction processes. By normalization to shales, the 3 forms of REEs follow convex shapes according to atomic number with middle REE (Sm, Eu, and Tb) enrichment, while light REE and heavy REE are depleted.  相似文献   

13.
Concentrations of rare earth elements (REE) and yttrium (Y), and major metals (Al, Fe and Mn) were measured in suspended particulate matter (SPM) and bottom sediments of the Kali estuary, western India, for their distribution and fractionation. The contents of SPM and metals in it were more uniform along the longitudinal transect during the monsoon. During the post- and pre-monsoons, low SPM in the upper/middle estuary coincided with high Fe and Mn and total REE (∑REE). But in the lower estuary SPM and its ∑REE content increased seaward, while Fe and Mn decreased. The Y/Ho ratios decreased seaward during the monsoon but increased during the post-monsoon. Sm/Nd ratios were more uniform along the transect during monsoon but decreased marginally seaward in other seasons. The Post-Archean Average Australian Shale (PAAS)-normalized REE patterns exhibited middle REE and heavy REE enrichment with positive Ce (\({\text{Ce}}/{\text{Ce}}^{*}\)), Eu (\({\text{Eu}}/{\text{Eu}}^{*}\)) and Y anomalies. The \({\text{Ce}}/{\text{Ce}}^{*}\) increased but \({\text{Eu}}/{\text{Eu}}^{*}\) decreased marginally seaward. The fine-grained sediments showed higher ∑REE and lower Y/Ho ratios than in coarse-grained sediments. The PAAS-normalized REE patterns of sediment were similar to that of SPM. The results revealed two processes, colloidal flocculation and coagulation of metals in the low-salinity zone and an estuarine turbidity maximum in the high salinity zone. Rare earths and yttrium (REY) in SPM and sediments primarily reflected the source rock composition than that of chemical weathering. Apart from physico-chemical processes, the mineralogy and grain size of sediments controlled the distribution and fractionation of REY in the estuary.  相似文献   

14.
Shallow groundwater and hot springs were collected from northeastern Guangdong Province, Southeast China, to determine the concentrations and fractionation patterns of rare-earth elements(REE). The results show that the La, Ce and Nd of REEs are abundant in groundwater and rock samples, and the ∑REE contents in groundwater and rock samples range from 126.5 to 2875.3 ng/L, and 79.44 to 385.85 mg/L, respectively. The shallow groundwater has slightly HREE-enriched PAAS-normalized patterns. However, the granitic rocks PAAS-normalized patterns, with remarkable negative Eu anomalies, are different from that of shallow groundwater. The enrichment of HREE is considered to be controlled by REE complexation and readsorption for most groundwater has Ce and Eu positive anomalies. The Ce and Eu anomalies in groundwater are controlled by redox conditions. Moreover, the Fe-contain sediments dissolution and/or the reduction of Fe oxyhydroxides are another factor contributing to Ce anomalies. The Eu anomalies in groundwater are controlled by the preferential mobilization of Eu2+ during water-rock interaction compared to Eu3+.  相似文献   

15.
Chol-qeshlaghi altered area lies in the northwestern part of the post-collisional Urumieh-Dokhtar magmatic arc, NW Iran. Pervasive silicic, argillic, phyllic and propylitic altered zones appears to be intimately affiliated to the fluids derivative of upper Oligocene Khankandi granodiorite. This paper is dedicated to the identification of geochemical characteristics of hydrothermal alterations, focusing on the determination of the mass gains and losses of REEs, to gain significant insights regarding the chemical exchanges prevailed between the host rocks and hydrothermal fluids. The low pH and high activity of SO_4~(-2) ligands in silicic alteration fluids, resulting in depletion of entire REEs. Decreasing of LREEs appeared in argillic zone may attributed to reduce in adsorption ability of clay minerals in low pH; whereas HREEs enrichment in phyllic zone was inclined to put it down to the abundance of sericite(± Fe oxides). A significant reduction of Eu/Eu* ratio in silicic zone can be attributed to negligible sulfides and clay minerals as some effective agents in adsorption of released Eu~(+2). Factors such as changes in pH, the abundance of absorptive neomorph mineral phases, activity of ligands play an important role in controlling the distribution and concentration of REEs in Chol-qeshlaghi alteration system.  相似文献   

16.
The rare earth element (REE) contents of sixteen surficial calcareous sediments from the southwestern Carlsberg Ridge, Indian Ocean, have been determined. The total REE vary from 35 ppm to 126 ppm and are inversely related to the calcium carbonate content. REEs show a strong positive correlation with Al + Fe + K + Mg + Na (r 2= 0.98) and Mn + Fe + Cu + Ni (r 2= 0.86) suggesting that the REE is associated with a combined phase of clays (mainly illite) and Mn-Fe oxyhydroxides. The aeolian input into these sediments is suggested from the weak positive Eu/Eu* anomaly. Shale-normalized (NASC) pattern along with La(n)/Yb(n) ratio suggest enrichment of heavy REE (HREE) relative to the light REE (LREE) with a negative Ce/Ce* anomaly implying retention of a bottom water REE pattern. An erratum to this article is available at .  相似文献   

17.
Major, trace and organic elements of a laterite profile developed on Neogene basalts in northern Hainan Island, South China were reported in this paper, the aim of which was to investigate element mobilization and re-distribution during extreme weathering. The results indicate that most of the elements have been mobilized and transferred downwards along the profile by aqueous solution. Organic matter (OM) can significantly improve the transport of insoluble elements. Among all the elements, Th is the least mobile. As for the general conservative elements during incipient chemical weathering, such as Fe, Ti, Zr, Hf, Nb and Ta, the removals are up to 20-40% in the upper profile. However, these elements behave as conservatively as Th in the lower profile. In the middle profile, oxic environment occurs, accompanied with significant OM decomposition. The Mn and Ce transferred downward are readily oxidized into insoluble Mn(IV) and Ce(IV) and precipitate in the oxic front. Important OM decomposition decreases the capacity of transfer of insoluble elements in aqueous solution. Consequently, Al significantly precipitates in the oxic front, and REEs, with the exception of Ce, precipitate largely in the OM-depleted layers. Co and U are also concentrated in the oxic front in association with Mn and Ce, respectively. However, Cr shows a negative correlation with Mn because its response to redox condition changes is reversed from that of Mn. Mn oxides/hydroxides, Fe oxides/hydroxides and secondary phosphate minerals other than clay minerals are potential hosts for REEs except for Ce in the profile; REEs with high concentrations in the profile seem closely associated with Mn oxides/hydroxides. Remarkable, highly correlated, Ce and Gd anomalies are observed in the profile. Ce anomalies are caused by Ce precipitation in the oxic environment and successive decomposition of organic matter. Gd anomalies are likely to have resulted from lower stability constants of Gd-OM complexes compared to those of neighboring REEs. The overall elemental behaviors in this profile suggest that organic matter plays a very important role in the mobilization and re-distribution of the elements during extreme weathering.  相似文献   

18.
Settling particles were sampled monthly for 1 year using an automated time-series sediment trap positioned at similar depths at two sites of high diatomaceous productivity in the North Pacific Ocean and Bering Sea. The particles were analyzed for rare earth elements (REEs) by inductively coupled plasma mass spectrometry (ICP-MS) with and without chemical treatment of the bulk samples to isolate siliceous fractions. The REE composition of the bulk samples is explained largely by the contribution of two distinct components: (i) carbonate with a higher REE concentration, a negative Ce anomaly and lighter REE (LREE) enrichment; (ii) opal with a lower REE concentration, a weaker negative Ce anomaly and heavier REE (HREE) enrichment.The siliceous fractions of settling particles are characterized by high Si/Al ratios (30-190), reflecting high diatom productivity at the studied sites. The La/Al ratio of the siliceous fraction is close to that of the upper crust, but the Lu/Al and Lu/La ratios are significantly higher than those of the upper crust or airborne particles, indicating the presence of excess HREEs in the siliceous fraction. Diatoms are believed to be important carriers of HREEs.The Ce anomaly, Eu anomaly, slope of the REE pattern, and ΣREE of the siliceous fraction vary exponentially with decreasing total mass flux. They can be well-reproduced according to the differential dissolution kinetics of elements in the order of Ce < lighter REEs (LREEs) < Eu = heavier REEs (HREEs) < Si from settling particles, where the dissolution rate is critically reduced through particle aggregation. This order is consistent with the vertical distribution of dissolved REEs and Si in oceans. The differential dissolution kinetics leads to HREE enrichment of the original diatoms and REE enrichment of dissolved diatoms. The Lu/Si ratio of the siliceous fraction of settling particles recovered from some of the highest diatom fluxes is identical to that of the two elements dissolved in deep seawater, providing further evidence for the dissolution of siliceous matter in deep water.  相似文献   

19.
对采自羌塘盆地那底岗日地区布曲组碳酸盐岩烃源岩进行了稀土元素地球化学研究,分析结果表明:海相碳酸盐岩烃源岩稀土总量(∑REE)最大值75.21μg/g,最小值20.58μg/g,平均值为36.67μg/g.稀土元素北美页岩标准化后具有相对富集轻稀土,亏损重稀土的特点.布曲组碳酸盐岩烃源岩Ce/Ce*值为0.83~0.9...  相似文献   

20.
The Montaña de Manganeso is a manganese vein-type deposit spatially associated with back-arc basin remnants of the Guerrero tectonostratigraphic terrane. The study of major- and trace-element geochemical characteristics of the deposit provides insight into the controls on ore-forming processes within the area. The deposit is characterized by low Co, Cu and Ni abundances, and high Ba (>10,000 ppm) contents and Mn/Fe ratios (<500), typical of hydrothermal Mn deposits. In addition, the low ∑REE abundances (18.7 to 103 ppm), negative Ce anomalies (0.2 to 0.6), and positive Y (1.00 to 2.34) and Eu anomalies (0.6 to 4.4) also suggest a hydrothermal source for the deposit. Discrimination plots involving ∑REE and Zr vs. (Cu + Ni + Co) and Ce/Ce* vs. Nd and Y/Ho further indicate a hydrothermal source in an oxidizing depositional environment. The Mn-Fe-(Ni + Cu + Co), MnO2-MgO-Fe2O3, (Cu/Zn)/Fe2O3 vs. (Zn/Ni)/MnO2 and Na/Mg diagrams display intermediate signatures between marine and terrestrial environments. This suggest that the Montaña de Manganeso deposit is the result of two metallogenic stages: (I) the earliest stage, which involved the formation of Mn oxides by hydrothermal/diagenetic processes in the Arperos back-arc basin during the Cretaceous; and (II) the latest stage took place subsequent to accretion the Guerrero tectonostratigraphic terrane onto the continent and involved the remobilization of the Cretaceous submarine Mn oxides (and associated trace elements) and subsequent redepositation by Tertiary continental hydrothermal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号