首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

15.
16.
17.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

18.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

19.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号