首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 974 毫秒
1.
国际地科联前寒武纪地层分会1988年在天津举行的第八次分会会议所修改完善的前寒武纪时代划分方案,其中对元古宙划为古、中、新三个代一级单位和十个纪,并给予正式命名。这一建议已被国际地层委员会于1989年7月在28届国际地质大会期间通过,并于1990年2月被国际地科联批准和推荐用于国际的前寒武纪划分和命名。但这一方案对太古宙未做详细的划分。  相似文献   

2.
关于中国元古宙地质年代划分几个问题的讨论   总被引:10,自引:0,他引:10  
本文简略回顾了我国元古宙划分的进展和问题,在我国地质文献中,元古宙通常以2.5Ga,1.8Ga,1.0Ga和0.57Ga为年代界线划分为在早,中和晚元古代。本文建议以古,中和新元古代代替早,中和晚元古代的命名,古元古代介于2.5Ga至1.8Ga之间,可包含三个纪,内部年代界线置于2.3Ga和2.05Ga,文中对三个纪的名称和代表悸地层单元提高明确的建议,中元古代通常包含长城纪和蓟县纪,纪的界线置于  相似文献   

3.
关于中国元古宙地质年代划分几个问题的讨论   总被引:1,自引:0,他引:1  
本文简略回顾了我国元古宙划分的进展和问题。在我国地质文献中,元古宙通常以2.5Ga、1.8Ga、1.0Ga.和0.57Ga为年代界线划分为早、中和晚元古代。本文建议以古、中和新元古代代替早、中和晚元古代的命名。古元古代介于2.5Ga至1.8Ga之间,可包含三个纪,内部年代界线置于2.3Ga和2.05Ga。文中未对三个纪的名称和代表性地层单元提出明确的建议。中元古代通常包含长城纪和蓟县纪,纪的界线置于1.4Ga,而该代的顶部时限置于1.0Ga。然而,中元古代内位于1.6Ga、1.4Ga和1.ZGa均有明确的地层界线,所以有可能进一步划分为四个纪。新元古代包含青白口纪和震旦纪,以0.8Ga作为它们的分界,但对于震旦纪的时限存在着明显的分歧,其底界年龄有置于0.9Ga、0.85Ga和O.8Ga等不同意见。有些地质学家建议震旦纪可再分为二个纪,亦有以冰碛层的底或顶为界的不同划分方法,因而内部界线分别置于0.7Ga或0.65Ga。本文作者倾向以国际上建议的0.545Ga代替我国现行使用的0.57Ga,作为震旦纪与寒武纪的年代界线。  相似文献   

4.
传统的前寒武纪地质年代表划分方案以全球标准地层年龄(GSSA)为基础,不代表任何特殊的岩石实体,仅以推测的绝对测年值为界线进行单元划分,脱离了客观的岩石记录和地球演化系统,不利于对前寒武纪地球系统的研究。2004年—2008年前寒武纪划分参考方案,以反映地球历史阶段特征的“关键事件”为界线,创建前寒武纪地层划分的“金钉子”,建立客观的、“自然的” 前寒武纪地质年代表,并且通过全球一级事件群把前寒武纪划分为5个宙,即创世宙、冥古宙、太古宙、过渡宙和元古宙。另外,经过综合分析建议将埃迪卡拉纪归到显生宙。因此,对前寒武纪的研究实际上变为对“前埃迪卡拉纪”的研究,使术语“显生宙”在内涵和应用上更加一致。虽然“参考方案”在一定程度上还仅仅是一个理论框架,需要大量的研究去充实和细化,但是对这两种划分方案的系统研究和对比,可以给我国前寒武纪工作者提供重要的研究思路和方向。  相似文献   

5.
末元古系全球层型的选择:层位、地点和命名   总被引:2,自引:0,他引:2  
孙卫国 《现代地质》1999,13(2):204-205
在国际地层委员会1989年推出的前寒武纪划分方案中,元古宙(宇)被分为3个代(界)10个纪(系)。这一方案的试行结果并不理想,特别是纪(系)级单元的划分对比因尚未建立全球层型而被束之高阁。末元古系(TerminalProerozoicSystem,又...  相似文献   

6.
《地质论评》1990,36(4):382-383
由晚前寒武纪专业组提议,全国地层委员会于1989年12月12日至13日在天津召开了“中国元古时期地层分类命名会议”。重点讨论了(1)元古代或元古界改称元古宙或元古宇及其上、下界限或界线的年龄问题,(2)元古宙(宇)内部的划分、界限(线)年龄及其名称问题;(3)各单元的符号问题。会议在全国  相似文献   

7.
在1989年1月30日至2月3日的国际地质对比计划理事会会议上,通过了12项新的研究项目,现介绍如下:(*者没有经费资助) ·~*234项:前寒武纪的火山沉积岩系的研究(1989—1990)项目负责人:I·Yace[象牙海岸(非洲)] ·~*253项:更新世结束时代的研究(1989—1993)项目负责人:J.L.Lundqvis(瑞典) ·267项:环太平洋造山运动古生代岩层的研究(1989—1998)项目负责人:M. Rickard,(澳大利亚)郭林斋(中国) ·275项:波罗地海沿岸地盾的深部地质研究(1989—1993)项目负责人:R. Gorbatschev(瑞典)F.P.Mitrofanov(苏联) ·281项:南美洲第四纪气候研究(1989—1993)  相似文献   

8.
太古宙四分的新动议   总被引:3,自引:0,他引:3  
国际地科联前寒武纪地层分会所提出的元古宙分为古、中、新三个代和十个纪的方案已先后被国际地层委员会和国际地科联执行局所通过.该分会又于今年4月15~18日在英国麦丁堡举行了第九次会议,讨论了太古宙的时代再划分问题.全球各大陆的8个国家13名成员出席了会议.经交流讨论,比较一致的同意了一个  相似文献   

9.
末元古系地层学   总被引:4,自引:0,他引:4  
末元古系地层学孙卫国(中国科学院南京地质古生物研究所210008)关键词末元古系,地层学,地层划分与对比在国际地层委员会1989年通过的“前寒武时代划分方案”中,距今2500~570Ma的元古宙被分为3个代,进而划分为10个纪。末元古纪,或称末前寒武...  相似文献   

10.
北京平原目前尚未建立系统的地质剖面。1867年庞培莱将北京西山分为3大系,1871年李希霍芬提出震旦系、划分12层。1922年葛利普将震旦系限定在前寒武系,1923年田奇镌将南口剖面划分为7个岩组,1934年高振西将震旦系3分(南口群、蓟县群、青白口群)。1976年乔秀夫3分青白口群(下马岭组、龙山组和景儿峪组),1980年汪长庆等将十三陵剖面分为4系12组,1991版《北京市区域地质志》将十三陵剖面分为3系12组。本文初步建立平原区地层表,详细描述太古宙结晶基底和元古宙地层剖面,在京南大兴区的榆垡(兴热-1井)和安定(兴热-2井)发现太古宙片麻岩,在京热-70井、京热-59井、京热-71井和京热-75井编录蓟县纪地层,利用亦庄小学钻孔厘定待建系下马岭组、青白口纪龙山组和景儿峪组。  相似文献   

11.
12.
A New Progress of the Proterozoic Chronostratigraphical Division   总被引:1,自引:0,他引:1  
The Precambrian, an informal chronostratigraphical unit, represents the period of Earth history from the start of the Cambrian at ca. 541 Ma back to the formation of the planet at 4567 Ma. It was originally conceptualized as a "Cryptozoic Eon" that was contrasted with the Phanerozoic Eon from the Cambrian to the Quaternary, which is now known as the Precambrian and can be subdivided into three eons, i.e., the Hadean, the Archean and the Proterozoic. The Precambrian is currently divided chronometrically into convenient boundaries, including for the establishment of the Proterozoic periods that were chosen to reflect large-scale tectonic or sedimentary features(except for the Ediacaran Period). This chronometric arrangement might represent the second progress on the study of chronostratigraphy of the Precambrian after its separation from the Phanerozoic. Upon further study of the evolutionary history of the Precambrian Earth, applying new geodynamic and geobiological knowledge and information, a revised division of Precambrian time has led to the third conceptual progress on the study of Precambrian chronostratigraphy. In the current scheme, the Proterozoic Eon began at 2500 Ma, which is the approximate time by which most granite-greenstone crust had formed, and can be subdivided into ten periods of typically 200 Ma duration grouped into three eras(except for the Ediacaran Period). Within this current scheme, the Ediacaran Period was ratified in 2004, the first period-level addition to the geologic time scale in more than a century, an important advancement in stratigraphy. There are two main problems in the current scheme of Proterozoic chronostratigraphical division:(1) the definition of the Archean–Proterozoic boundary at 2500 Ma, which does not reflect a unique time of synchronous global change in tectonic style and does not correspond with a major change in lithology;(2) the round number subdivision of the Proterozoic into several periods based on broad orogenic characteristics, which has not met with requests on the concept of modern stratigraphy, except for the Ediacaran Period. In the revised chronostratigraphic scheme for the Proterozoic, the Archean–Proterozoic boundary is placed at the major change from a reducing early Earth to a cooler, more modern Earth characterized by the supercontinent cycle, a major change that occurred at ca. 2420 Ma. Thus, a revised Proterozoic Eon(2420–542 Ma) is envisaged to extend from the Archean–Proterozoic boundary at ca. 2420 Ma to the end of the Ediacaran Period, i.e., a period marked by the progressive rise in atmospheric oxygen, supercontinent cyclicity, and the evolution of more complex(eukaryotic) life. As with the current Proterozoic Eon, a revised Proterozoic Eon based on chronostratigraphy is envisaged to consist of three eras(Paleoproterozoic, Mesoproterozoic, and Neoproterozoic), but the boundary ages for these divisions differ from their current ages and their subdivisions into periods would also differ from current practice. A scheme is proposed for the chronostratigraphic division of the Proterozoic, based principally on geodynamic and geobiological events and their expressions in the stratigraphic record. Importantly, this revision of the Proterozoic time scale will be of significant benefit to the community as a whole and will help to drive new research that will unveil new information about the history of our planet, since the Proterozoic is a significant connecting link between the preceding Precambrian and the following Phanerozoic.  相似文献   

13.
论中国前寒武纪地质时代及年代地层的划分   总被引:7,自引:1,他引:7  
本文讨论了前寒武纪地质时代和年代地层划分的原则和命名,提出建立隐生宙、原生宙和显生宙。隐生宙包括冥古代和太古代;原生宙分始元代、中元代和新元代。划分中的重要改变是根据新的年龄值数据将五台群归入太古代,将长城系底界改为1700Ma;并根据蠕虫-须腕动物群的出现,将震旦纪归入古生代。文中还阐述了作者对前寒武纪时代划分的新观点。  相似文献   

14.
梅冥相 《古地理学报》2016,18(4):513-524
在现行的前寒武纪地质年代表中,由于太古宙底界没有得到很好的定义,只是被粗略地置于大约4000,Ma,因此也造成了一个没有得到较好定义的“冥古宙”。2个重要的发现促使学者们对冥古宙的地层学属性进行修订:(1)在西澳大利亚Jack山脉太古宙砾岩中发现了真正古老的锆石晶体,其不仅可将地层时代延伸到4404,Ma,而且包含了有关地球早期环境条件较为丰富的信息; (2)在加拿大北部发现了大约4030,Ma的Acasta片麻岩。根据这些发现,并结合月球和陨石的测年数据,就产生了大量有关太阳系和地球早期历史的新知识,包括太阳系与地球的形成、初生地球时期的重要变化及其物质记录和生命的起源及早期进化,这成为修订冥古宙地层学属性的重要基础。修订后的冥古宙代表了地球演变历史的最早时段,即从太阳系和地球在T0=4567,Ma的形成,一直延续到地球上最古老岩石的出现(4030,Ma)。冥古宙还可被进一步划分为2个代:(1)“混沌代”(4567,Ma—4404±8,Ma);(2)“杰克山代”或“锆石代”(4404±8,Ma—4030,Ma)。由于没有保存相应的地层记录,因此冥古宙顶界(4030,Ma)与底界(4567,Ma)的年龄值,仅为一个计时性的年代界限。上述这个被赋予了明确地层学属性的冥古宙,不仅代表了前寒武纪地层学研究的一个重要进展,而且也为深入了解地球早期演变历史提供了许多重要的理念。  相似文献   

15.
The Palaeozoic marine invertebrate fossil record in southern Africa is characterised by extensive data for the Early and Middle Devonian but extremely limited or absent for other Palaeozoic Periods. The Mesozoic Era is lacking in marine invertebrate fossils for the Triassic, Late Jurassic, and Cretaceous. For the Cenozoic Era there is limited marine megafossil information. Overall, in benthic, cool waters, Palaeozoic, marine megafossils from southern Africa appear to represent relatively low diversity communities, when compared to ecologically comparable warm water environments elsewhere. However, the marine benthic Cretaceous and Cenozoic faunas of southwestern Africa are typically diverse warm water types, until the later Miocene when cool waters again prevailed. The Benguela Current clearly influenced lower diversity faunas.Climatically, it can be inferred from the marine megabenthic pal˦ontological evidence, thatwarm conditions were present from Early Cambrian until mid-Ordovician times, followed by a much cooler climate that persisted well into the Middle Devonian. The Late Palaeozoic evidence thus indicates cool to cold conditions. In contrast, the Late Permian fossils are consistent with warmer conditions, continuing through Late Jurassic and Cretaceous times along the East African and West African coasts, until the Late Miocene.Within the Gondwanan framework, a Central African region can be envisaged that was subject to non-marine conditions during the entire Phanerozoic Eon. Peripheral to this central African region were marine environments of various ages. The geological history of these peripheral regions was fairly unique. Some features in southern Africa are similar of those found in the Paraná Basin and the Falkland Islands.Most of North Africa from central Senegal to Libya contains a Phanerozoic marine cover extending from the Early Cambrian through to the Carboniferous, characterised by warm water faunas, except for the Ordovician which yields cool-cold water faunas.The Palaeozoic of Arabia, which was an integral part of Africa until the Miocene, has yieldedwarm water fossils.  相似文献   

16.
It is proposed by the authors in the light of isotopie age data available that anorthosite events are advisable to be assigned to two periods, i.e., the Karelian period (1,700–2,00 m.y.) and the Grenville period (1.000–1.300 m.y.), rather than simply to a time span of 1,300±200 m.y. as suggested by N. Herz in 1969. This division is in agreement with the earth history. It is noticed that anorthosites always occur in the mobile zones between plates, indicating a close relationship with deep faults. Anorthosites of the Karelian period are found principally in tectonic zones that strike approximately NWW or NEE in Eurasian (possibly North American) plate. Grenville anorthosites, constituting two (possibly three) belts running roughly in NNE or NNW direction, occur in orogenic zones marginal to the present continents resulting from the breaking up of Pangaca. This suggests that the breaking up of the ancient continent of Pangaea started to operate as early as late Precambrian and was probably responsible for the continental drift along these tectonic belts during late Palaeozoic.  相似文献   

17.
陈秀法 《地质与勘探》2021,57(6):1191-1202
非洲铀矿资源丰富,在全球占有重要地位,是我国利用铀矿资源的重要来源地。通过分析非洲259处已知铀矿床(点)的地质特征与勘查开发现状,揭示非洲铀矿资源具有分布集中、规模巨大、矿床类型多样等特点,砂岩型、古石英-卵石砾岩型、侵入岩型是最重要的铀矿类型,非洲铀矿主要分布于卡普瓦尔克拉通、新元古代褶皱带的达马拉褶皱带和西非活动带伊勒姆登大型盆地,成矿作用明显受地层、构造、岩浆岩等控制。不同类型矿床成矿时代具有各自特征,古石英-卵石砾岩型铀矿床全部形成于太古宙,侵入岩型铀矿床大多形成于元古宙,砂岩型铀矿床形成时代跨度大,从元古宙到新生代均有产出。近十年来非洲新增铀储量27万吨。建议国内企业抓住机遇,以侵入岩型和砂岩型铀矿为投资重点,加强在纳米比亚和尼日尔等铀矿资源国的勘查开发合作。  相似文献   

18.
Situated within the crystalline metamorphic complex of Champtoceaux NE of Nantes, the orthogneiss of La Picherais (near St Mars-du-Désert, Loire Atlantique, France) show relicts of a granulite facies paragenesis. Comparison with other granulitic rocks in the Hercynian fold-belt suggest possible ages ranging from Lower Proterozoic to Phanerozoic. The Rb-Sr whole rock method yields an errorchron of 570±110 m.y. for the Picherais orthogneiss, whereas the U-Pb zircon method indicates an upper intersection on Concordia at 1,880±120 m.y. and a lower intersection at 423±10 m.y. Several interpretations are possible for these data: the granite emplacement age was (1) 1,900 m.y. ago. (2) more likely Upper Proterozoic — Lower Palaeozoic. The zircons concordant at 1,900 m.y. were either present in the granitic magma at its time of origin or were introduced into the magma during emplacement. These zircons could be derived from sedimentary horizons such as found in the Lower Ordovician sandstones of the Armorican massif whose zircon age data are presented here.  相似文献   

19.
地球运动周期性之初探   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋匡仁 《地质科学》1976,11(1):23-41
周期性是宇宙一切事物运动发展的普遍现象。从宏观空间--天体的运动,如银河系的旋转,太阳黑子的活动;到微观世界--基本粒子的运动,相同或类似现象在时间上莫不具有循环往复的特点。各种物质运动形式的周期性已逐渐地越来越多地为人们所认识,从昼夜的交替及四季的递变认识到地球自转与公转的周期,通过天文观测又进一步认识了日、月蚀出现的周期及其他一些天体运动的周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号