首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
张亭亭  李江山  王平  薛强 《岩土力学》2019,40(10):3928-3936
采用硫酸亚铁(FeSO4)对铬污染土进行稳定化处理。选用浸出试验、Cr(VI)残留值试验和形态提取试验,研究了粒径和有机质对铬污染土稳定特性的影响规律。试验结果表明,粒径和有机质对铬污染土稳定特性有较大影响。粒径的减小可显著降低稳定土中Cr(VI)和总Cr的浸出浓度及稳定土中Cr(VI)的含量;当污染土粒径小于2 mm时,Fe(II)/Cr(VI)摩尔比为3,稳定土中Cr(VI)和总Cr的浸出浓度分别为4.68、8.9 mg/L,均低于我国《危险废弃物鉴别标准 浸出毒性鉴别》(GB/T5085.3-2007)的限值。有机质添加量的增加可明显降低稳定土中Cr(VI)和总Cr的浸出浓度及Cr(VI)的含量。当Fe(II)/Cr(VI)摩尔比为3时,有机质的添加量为5%,稳定土中Cr(VI)的含量为28.3 mg/kg,低于我国《土壤环境质量标准》(GB15618-2008)中工业和商业用地限值(30 mg/kg);当有机质的添加量为10%时,稳定土中Cr(VI)的含量为4.8 mg/kg,低于居住用地限值(5 mg/kg)。形态提取试验结果表明:粒径的减小可降低弱酸提取态的铬含量,增加可还原态的铬含量,而对可氧化态和残渣态的铬含量影响不大;有机质可促使弱酸提取态、可还原态的铬转化为可氧化态的铬,而残渣态的铬变化不大。稳定土中铬从活性态向较稳定态转化,是铬稳定土稳定特性和环境风险变化的根本原因。  相似文献   

2.
《岩土力学》2017,(Z2):82-88
采用硫酸亚铁(Fe SO_4)对铬污染土进行稳定化处理。基于浸出试验、碱性消解和改进BCR形态提取试验,研究了p H和粒径对铬污染土稳定性能的影响规律。试验结果表明,粒径和p H对铬污染土稳定性能有较大影响,随着粒径的降低,Cr(Ⅵ)、总Cr的浸出浓度和Cr(Ⅵ)含量均降低,粒径的降低可促使铬从弱酸态(F1态,活性态)向可还原态(F2态,较稳定态)转化。Cr(Ⅵ)浸出浓度和Cr(Ⅵ)含量均随着p H降低而降低,而总Cr的浸出浓度呈相反的变化规律。p H对铬形态分布存在临界值,当p H高于临界值时,随着p H的降低,稳定土中F1、F3态铬含量显著降低,F2态铬含量明显增加;当p H低于临界值时,p H的降低稳定土中F1态铬含量明显增加,F2、F3态铬含量显著降低。铬赋存形态的变化是铬污染稳定性能变化的本质原因。  相似文献   

3.
针对铬污染软土,自行设计了电动淋洗试验装置,开展了铬污染软土室内土柱淋洗试验,分析了试验过程中电流、电解质溶液pH的变化以及淋洗液种类、外加电压、温度对重金属铬去除特性的影响。结果表明:电动淋洗试验可以有效去除土壤中的重金属铬;相对于单一淋洗试验,用10 V电压强化淋洗试验显著提高了重金属铬去除效果,淋洗液为十二烷基苯磺酸钠(SDS)时Cr(VI)和Cr(总)去除效率是单一淋洗法的2.79,3.12倍。当电压为10 V,温度升高至45 ℃时,淋洗液为柠檬酸(CA)和草酸(OA)的各组试验表明Cr(Ⅵ)与Cr(总)去除率均相应提高;而淋洗液为十二烷基苯磺酸钠时的试验组中Cr(VI)去除率提高了5.84%,Cr(总)去除率降低了4.25%,表明升高温度使部分Cr(VI)还原成不易迁移的Cr(III);淋洗液为草酸的试验组中升高温度时Cr(Ⅵ)与Cr(总)去除率最高,分别达到了82.08%、77.57%,分别相应提高了27.65%、26.01%。电动淋洗试验后,铬污染软土土粒结构变得更紧密,土粒之间的孔隙减小且被填充的更加密实。  相似文献   

4.
采用新型含磷材料(KMP)及水泥(PC)固化稳定化锌(Zn)、铅(Pb)重金属污染土,研究试验土经冻融循环后的毒性浸出(CLP)、无侧限抗压强度(UCT)、压汞试验(MIP)及化学形态分析(BCR),探究固化污染土的力学特性及耐久特性。试验结果表明,经冻融循环后,未处理污染土Zn、Pb浸出值均超过中国土壤标准;采用KMP和PC固化后,Zn、Pb浸出浓度明显低于未处理污染土;KMP固化污染土比PC固化污染土重金属固化效果更为显著,并能达到中国土壤标准;与常规养护相比,冻融循环之后的固化土体强度明显减小;经过12级冻融循环的KMP固化复合Zn、Pb重金属污染污染土强度高于PC固化试样8.6倍。压汞试验表明,经12级冻融循环后固化污染土孔隙体积增大,化学形态分析结果表明,采用KMP、PC固化重金属污染土中可交换态Zn随着养护龄期的增长而减少,残渣态Zn增加。  相似文献   

5.
张亭亭  王平  李江山  万勇  薛强  王士权 《岩土力学》2018,39(6):2115-2123
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验、渗透试验和浸出试验,研究了养护龄期和铅含量对污染土固稳性能的影响规律。试验结果表明:固化土的强度随养护龄期增加而增大,渗透系数和浸出浓度减小,7 d龄期的固化土强度和浸出浓度分别为0.36 MPa、1.75 mg/L,均满足环境安全标准;铅含量对固化土的强度及渗透特性的影响均存在临界值,为500 mg/kg。铅含量低于临界值时,固化土的强度随着铅含量的增加而增加,渗透系数随着铅含量的增加而减小。浸出浓度随铅含量的增加而增加,但浸出浓度均低于浸出安全标准。压汞试验结果表明,随养护龄期的增大,固化土孔隙体积减小,铅含量不超过临界值时,固化土孔隙体积随着铅含量的增大而减小。扫描电镜试验结果表明:随着养护龄期的增加,土颗粒团聚化越明显,胶结程度加强;铅含量不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于0.1 ?m的孔隙体积来影响固化土的渗透特性。  相似文献   

6.
地下水中铬的分离技术及其应用   总被引:1,自引:0,他引:1  
提出了一种将地下水中的铬与其他基本离子分离的技术,用于固体离子源热电离质谱计(TIMS)测定铬同位素比值.利用铬的氧化态以阴离子形式存在的特点,采用阴离子交换色层分离法将Cr5 与干扰阳离子分离;利用铬的还原态以阳离子形式存在的特点,将Cr3 与硫酸根等干扰阴离子分离.该方法可以成功地应用于地下水中铬同位素信息的测定,在地下水铬污染研究中有着广阔的应用前景.  相似文献   

7.
日益严重的环境污染问题导致土壤中的重金属离子越来越多,这不仅使得土的工程性质受到影响,而且有害重金属离子的渗出也会威胁人类的健康。目前常采用水泥固化技术(S/S法)来处理重金属污染土。但当地下水中富含侵蚀性盐离子时,固化后的重金属污染土会受到影响,进而改变其强度及重金属离子的滤出特性。通过系统的室内试验,对水泥固化铬污染土在NaCl溶液浸泡后的强度特性及重金属离子的滤出特性进行了研究。试验结果表明,水泥固化铬污染土的无侧限抗压强度随NaCl溶液浓度的增加而减小,而随浸泡时间的增加呈先减小后增大的趋势,浸泡7 d时最小。毒性特征沥滤试验(TCLP)结果显示,浸出液中Cr3+浓度随NaCl浓度增加而增大,随浸泡时间增加而减小;而浸出液的pH值随NaCl浓度增加而减小,随着浸泡时间的增加呈先减小后增大的趋势,浸泡7 d时最小;浸出液的pH值在4.0~5.5范围内时,Cr3+滤出量随pH值增大而减小。  相似文献   

8.
日益严重的环境污染问题导致土壤中的重金属离子越来越多,这不仅使得土的工程性质受到影响,而且有害重金属离子的渗出也会威胁人类的健康。目前常采用水泥固化技术(S/S法)来处理重金属污染土。但当地下水中富含侵蚀性盐离子时,固化后的重金属污染土会受到影响,进而改变其强度及重金属离子的滤出特性。通过系统的室内试验,对水泥固化铬污染土在NaCl溶液浸泡后的强度特性及重金属离子的滤出特性进行了研究。试验结果表明,水泥固化铬污染土的无侧限抗压强度随NaCl溶液浓度的增加而减小,而随浸泡时间的增加呈先减小后增大的趋势,浸泡7d时最小。毒性特征沥滤试验(TCLP)结果显示,浸出液中Cr3+浓度随NaCl浓度增加而增大,随浸泡时间增加而减小;而浸出液的pH值随NaCl浓度增加而减小,随着浸泡时间的增加呈先减小后增大的趋势,浸泡7d时最小;浸出液的pH值在4.0~5.5范围内时,Cr3+滤出量随pH值增大而减小。  相似文献   

9.
为了解某化工厂附近土壤铬污染状况及其生物有效性,研究了该化工厂周边的土壤、粉尘、排污底泥、工业废渣和水等不同介质中重金属含量及Cr的化学形态特征。结果显示,该区域土壤出现以化工厂为中心的大面积Cr异常;废渣和部分底泥中Cr的含量是土壤背景值的近100倍乃至上万倍;表层土壤和粉尘中Cr元素含量与化工厂距离变化曲线的一致性,表明化工厂粉尘是引起大面积Cr异常的主要污染源;不同介质中Cr元素主要以残渣态(生物不可利用态)存在,但底泥中Cr的潜在可利用态、废渣中Cr的可利用态存在一定的比例,会对当地的动植物和人体产生负面的生态效应,应重视其可能引起的生态后果。  相似文献   

10.
偶氮胂Ⅲ光度法测定微量铬的研究及应用   总被引:1,自引:0,他引:1  
范华均  曲波 《岩矿测试》1996,15(3):210-212
研究了铬(Ⅲ)与偶氮胂Ⅲ(ASAⅢ)的显色反应。在pH28的邻苯二甲酸氢钾HCl缓冲溶液中,铬(Ⅲ)与ASA(Ⅲ)形成蓝色配合物,其最大吸收峰位于600nm处,摩尔吸光系数为501×104L·mol-1·cm-1,配合物组成比为1∶1,铬的质量浓度在0~060mg/L内符合比耳定律。结合离子交换分离,应用该法测定了煤飞灰、茶叶和水样中铬的含量,结果与二苯碳酰二肼法相符  相似文献   

11.
The photoreduction efficiency of toxic hexavalent chromium into non-toxic trivalent chromium was studied using local low-cost material and modern technology. The materials involved different iron–titanium oxide nanopowders synthesized via simple hydrothermal–hydrolysis process. X-ray diffraction and high-resolution transmission electron microscope were employed to study the structural properties of the as-prepared samples. The effects of molar ratio (Fe/Ti) and hydrothermal temperature on spectroscopic properties have been investigated using Fourier transform infrared FT-IR spectroscopy. The photocatalytic performance of hexavalent chromium was systematically studied at various conditions including initial concentration of Cr(VI), hydrothermal temperature and Fe/Ti ratios of mixed iron–titanium oxide powders. It has been found that the highest photoreduction efficiencies of Cr(VI) were 95.7 and 86.2% at initial concentrations 10 and 60 ppm of Cr(VI), respectively. The synthesized mixed Fe2O3–TiO2 photocatalyst exhibited higher efficiency of about 88% under visible light irradiation. The as-prepared mixed oxide catalyst exhibited high photocatalytic conversion efficiency and recycling stability in comparison with different commercial catalysts.  相似文献   

12.
为了解决宁波地区电镀场地重金属污染问题,研究利用自配固化剂开展铬污染土的毒性浸出试验、无侧限抗压强度试验、动荷载作用下的长期稳定性试验以及扫描电镜试验。在此基础上分析固化土的力学特性、浸出特性等随养护龄期、固化剂掺量、固化剂配比、铬污染水平的变化规律。结果表明:自配固化剂对铬污染土的固化率均达85%以上,固化率大体上随...  相似文献   

13.
The oxidation states of chromium in GSJ JSO-2 (artificially contaminated soil) and three other geochemical reference materials (GSJ JSO-1, JLS-1 and JMS-1) were observed using X-ray near edge structure (XANES). For comparison, other artificially contaminated soil materials (mimic-JSO-2) were prepared by adding Cr(VI) into JSO-1. Their oxidation states of chromium were determined using XANES. The chromium contents were 1118 μg g-1 for JSO-2, 1352 μg g-1 for mimic-JSO-2 and 69-113 μg g-1 for the other reference materials. Most chromium was present as hexavalent in mimic-JSO-2. No hexavalent species were detected in other samples. These results for chromium oxidation state in JSO-2 and mimic-JSO-2 obtained with XANES resembled those obtained from a chemical extraction method. The present JSO-2 has no trace of Cr(VI), although Cr(VI) was added as a major species during preparation. On the other hand, the content of Cr(VI) obtained in mimic-JSO-2 agreed with the original Cr(VI) content. A time-elapse study showed that Cr(VI) contents in mimic-JSO-2 decreased gradually to 70% of the original abundance during 240-day preservation in dry conditions. Moreover, the abundance of Cr(VI) decreased markedly to 15% after 240 days in the wet mimic-JSO-2 containing 20% m/m of water. These experiments suggested that soil humidity enhanced the reduction of Cr(VI) and that Cr(VI) was reduced even in dry conditions. Consequently, it is reasonable to infer that Cr(VI) doped into JSO-2 was completely reduced to Cr(III) during the preservation period of 5 years. The certification of the long-term stability of the chemical form in reference materials will be much more important in future.  相似文献   

14.
Among the dominant species of chromium, the trivalent form widely occurs in nature in chromite ores or in silicate minerals and is extremely immobile. The higher oxidation state Cr(VI), is, however, rarely found in nature, is more mobile, and several times more toxic than Cr(III). Cr(VI) occurs in chromates and dichromates manufactured from chromite ores. The hexavalent state is stable in an oxidizing alkaline environment, whereas the trivalent state is stable in a reducing acidic environment. Serpentinization and Mg release during deuteric alteration of ultramafic rocks create alkaline pore water and lateritization is an intensive oxidation process. Chromite ore bodies in oxidized serpentinite therefore may generate hexavalent chromium from the inert chromites and cause hazardous chromium pollution of the water. With this end in view, a combined field and laboratory study has been made on chromite-bearing oxidized serpentinite rocks of Sukinda in Orissa, India. Laboratory leaching studies on mine overburden samples, chemical analyses of streamwater, and hydrolysate incrustation on detrital grains taken from stream beds have indicated the possibility of chromium mobilization from the chromite ores into the waterbodies.  相似文献   

15.
Soil samples from chromite mining site and its adjacent overburden dumps and fallow land of Sukinda, Odisha, were analysed for their physico-chemical, microbial and metal contents. Chromite mine soils were heterogenous mixture of clay, mud, minerals and rocks. The pH of the soils ranges between 5.87 and 7.36. The nutrient contents of the mine soils (N, P, K and organic C) were found to be extremely low. Analysis of chromite mine soils revealed accumulation of a number of metals in high concentrations (Fe > Cr > Mn > Ni > Zn > Pb > Sr) which exceeded ecotoxicological limits in soil. Correlation and cluster analysis of metals revealed a strong relation between Cr, Ni, Fe, Mn among the different attributes studied. Assessment of different microbial groups such as fungi, actinomycetes and bacteria (heterotrophic, spore forming, free-living nitrogen fixing, phosphate solubilising and cellulose degrading) from mine soils were found to be either extremely low or absent in some soil samples. Further chromium tolerant bacteria (CTB) were isolated using 100 mg/L Cr(VI) enriched nutrient agar medium and were screened for their tolerance towards increasing concentrations of hexavalent chromium and other toxic metals. Out of 23 CTB isolates, three bacteria tolerated up to 900 mg/L, 6 up to 500 mg/L, 20 up to 200 mg/L of Cr(VI). These bacteria were also found to be sensitive towards Cu > Co > Cd and very few CTB strains could show multiple metal tolerance. These strains have great scope for their application in bioremediation of toxic chromium ions in presence of other metals ions, which needs to be explored for their biotechnological applications.  相似文献   

16.
During the manufacturing of chromate salts (1972–1992) large quantities of Chromite Ore Processing Residue (COPR) were released into a decantation pond east of the former chemical plant of Porto-Romano (Durres, Albania), giving rise to yellow colored pond sediments. These Cr(VI) bearing sediments were deposited upon Quaternary silty-clay lagoonal sediments rich in iron oxides and organic matter. The pH values in these lagoonal sediments vary around 6.6, while in the pond sediments, it is mainly acidic (due to the presence of the sulfur stock piles in the area and the release of the H2SO4 from the activity of the former chemical plant), varying between 1.4 and 3.8. Continuous leaching of the COPR waste resulted in yellow-colored surface water runoff. The prediction of pH changes in the different types of sediments based upon acid/base neutralizing capacity (ANC/BNC) jointly with the quantitative data on release of heavy metals and especially Cr is considered an important advantage of the pHstat leaching test if compared to conventional leaching procedures. Thus, factors controlling the leaching of Cr(VI), Cr(III), Ca, Al, Fe, Mg from the COPR were investigated by means of pHstat batch leaching tests and mineralogical analysis. Moreover, mathematical and geochemical modeling complemented the study. The COPR in the area contain very high concentrations of chromium 24,409 mg/kg, which mainly occurs as Cr(III) (75–90%) as well as Cr(VI) (25–10%). The leaching of Cr(VI) occurs in all the range (2–10) of the tested pH values, however, it decreases under acidic conditions. Beside some reduction of Cr(VI) to Cr(III), the Cr(VI) content of the leachtes remains relatively high in the acidic environment, while the limning of Cr(VI) pond sediments will increase the release of the latter specie. The leaching of the Cr(III) occurs strictly under acidic conditions, whereby limning of these sediments will give rise to the lower solubility of Cr(III). The key mineral phases responsible for the fast release of the Cr(VI) are: the chromate salts (i.e. sodium chromate and sodium dichromate), while sparingly soluble chromatite (CaCrO4) and hashemite (BaCrO4) release Cr(VI) very slowly. Thus, pH and mineral solubility have been identified as key factors in the retention and the release of the hexavalent CrO4 2− and Cr2O7 from the COPR-rich pond sediments.  相似文献   

17.
The mobility and toxicity of Cr within surface and subsurface environments is diminished by the reduction of Cr(VI) to Cr(III). The reduction of hexavalent chromium can proceed via chemical or biological means. Coupled processes may also occur including reduction via the production of microbial metabolites, including aqueous Fe(II). The ultimate pathway of Cr(VI) reduction will dictate the reaction products and hence the solubility of Cr(III). Here, we investigate the fate of Cr following a coupled biotic-abiotic reduction pathway of chromate under iron-reducing conditions. Dissimilatory bacterial reduction of two-line ferrihydrite indirectly stimulates reduction of Cr(VI) by producing aqueous Fe(II). The product of this reaction is a mixed Fe(III)-Cr(III) hydroxide of the general formula Fe1−xCrx(OH)3 · nH2O, having an α/β-FeOOH local order. As the reaction proceeds, Fe within the system is cycled (i.e., Fe(III) within the hydroxide reaction product is further reduced by dissimilatory iron-reducing bacteria to Fe(II) and available for continued Cr reduction) and the hydroxide products become enriched in Cr relative to Fe, ultimately approaching a pure Cr(OH)3 · nH2O phase. This Cr purification process appreciably increases the solubility of the hydroxide phases, although even the pure-phase chromium hydroxide is relatively insoluble.  相似文献   

18.
The charged sites on soil particles are important for the retention/adsorption of metals. Metallic counterions can neutralize the intrinsic charges on the surfaces of soil particles by forming complexes. In this study, efforts have been made to determine the effect of surface potential, pH, and ionic strength on the adsorption of four metal ions, hexavalent chromium Cr(VI), trivalent chromium Cr(III), nickel Ni(II) and cadmium Cd(II), in glacial till soil. Batch tests were performed to determine the effect of pH (2–12) and ionic strength (0.001–0.1 M KCl) on zeta potential of the glacial till soil. The point of zero charge (pH PZC ) of glacial till was found to be 7.0±2.5. Surface charge experiments revealed the high buffering capacity of the glacial till. Batch adsorption experiments were conducted at natural pH (8.2) using various concentrations of selected metals. The adsorption data was described by the Freundlich adsorption model. Overall glacial till shows lower adsorption affinity to Cr(VI) as compared to cationic metals, Cr(III), Ni(II) and Cd(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号