首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
朝鲜甑山地区甑山"群"(杂岩)的主要岩石类型包括石榴云母片麻岩、石榴角闪岩,并有少量大理岩。其原岩为泥质岩为主的碎屑岩,并含有少量火山岩和碳酸盐岩,经历了角闪岩相到麻粒岩相变质作用。本文对甑山"群"2件石榴云母片麻岩和1件石榴角闪岩样品进行了锆石-榍石-金红石U-Pb体系年代学研究。石榴云母片麻岩中分选出的锆石均为变质新生锆石,Pb-Pb加权平均年龄为1850±5Ma,没有发现继承锆石组分,暗示原岩为缺乏碎屑锆石的泥质岩。石榴角闪岩中的榍石根据成因不同,可分为两期,即早期麻粒岩相变质生长的榍石和后期热事件生长榍石。早期榍石具有高U、高Th/U比值特点,U-Pb分析构成一条不一致线,上交点年龄1831±5Ma代表了早期变质热事件冷却到榍石U-Pb体系封闭温度时代,下交点年龄155±3Ma代表后期热事件造成Pb丢失时代;另一种榍石具有低U低Th/U比值特点,U-Pb年龄为单一的153±3Ma,为中生代构造热事件的新生榍石。两类样品中的金红石少量颗粒保存有早期U-Pb年龄信息,绝大多数在~155Ma发生完全重置,并直到~110Ma一直处于U-Pb体系开放状态。以上数据说明,甑山"群"在~1850Ma前发生高级变质,1850~1830Ma开始抬升出露,并成为中新元古界沉积岩物源与沉积基底,中生代受到朝鲜广泛发育的岩浆-热事件的影响。  相似文献   

2.
榍石LA-ICP-MS U-Pb定年技术研究   总被引:3,自引:0,他引:3  
榍石具有较高的U含量和封闭温度,是一种重要的适用于U-Pb定年的副矿物。然而,基体效应与普通Pb校正成为制约榍石LA-ICP-MS U-Pb定年发展的主要因素。本文以~(206)Pb/~(238)U为例,采用基体归一化因子(F_(AVG))评估了锆石与榍石U-Pb定年标准的基体效应,结果显示榍石F_(AVG)几乎都大于1.20,而锆石F_(AVG)明显都小于1.20,表明锆石与榍石U-Pb定年标准存在显著的基体效应。以BLR-1榍石标准为外部校准标样,OLT1榍石获得的谐和年龄1014.9±4.8Ma(95%置信水平,n=23,MSWD=0.32)与SHRIMP谐和年龄1017.1±3.6Ma及ID-TIMS谐和年龄1014.6±1.3 Ma在误差范围内一致,同时获得~(206)Pb/~(238)U、~(207) Pb/~(235) U、~(207) Pb/~(206) Pb加权平均年龄在误差范围内与其谐和年龄一致;而以91500锆石为外部校准标样,OLT1榍石获得的~(206)Pb/~(238)U加权平均年龄为891.3±9.5 Ma(n=23,MSWD=5.3),与ID-TIMS测得的谐和年龄相比偏低约12%。经~(207)Pb法校正后,TCB榍石获得的~(206)Pb/~(238) U加权平均年龄1015.6±6.2 Ma(n=16,MSWD=0.84)与ID-TIMS谐和年龄1018.1±1.7Ma在误差范围内一致。本研究表明,采用基体匹配的榍石标准为外部标样,利用LA-ICP-MS对榍石进行U-Pb定年也能获得与ID-TIMS相一致的年龄,精度(2RSE)小于2%。  相似文献   

3.
对辽东本溪连山关、高家沟和营口后仙峪三个花岗岩样品进行了LA-ICPMS锆石U-Pb定年、微量元素以及全岩主量元素分析,计算了锆石饱和温度和Ti温度。连山关和高家沟花岗岩锆石U-Pb一致线上交点年龄分别为2198±31.5 Ma和2162±31 Ma,后仙峪花岗岩锆石207Pb/206Pb加权平均年龄为2204±37 Ma,在误差范围内一致地代表了辽东地区古元古代一期花岗岩浆侵位事件。三件样品Zr温度和Ti温度基本相同,平均温度分别为798℃(787~818℃)和779℃(764~797℃),与Ab-An-Or图解给出的温度范围一致。花岗岩副矿物中出现锆石和含Ti副矿物表明Zr温度和Ti温度既反映了锆石结晶温度也代表了花岗岩浆的上限温度。同时,Ti温度与Th/U、10000/Hf的关系对判断花岗岩浆熔融-结晶分异过程中体系开放程度及岩浆形成构造背景具有重要指示作用。  相似文献   

4.
西昆仑大红柳滩地区花岗岩类分布广泛,与伟晶岩型锂(铍)矿化时空关系密切。为了约束其地质特征、岩石成因以及对伟晶岩型锂(铍)成矿的作用,文章对白龙山闪长岩、俘虏沟闪长岩和大红柳滩二云母花岗岩进行了岩石学、矿物学、地球化学和年代学研究工作。地球化学数据揭示白龙山闪长岩和俘虏沟闪长岩明显富MgO、CaO和TiO2,属于准铝质-弱过铝质、高钾钙碱性岩浆系列,结合已有全岩Sr-Nd、锆石Lu-Hf等同位素数据,白龙山闪长岩和俘虏沟闪长岩涉及新生地壳的贡献,其源区贫黏土,可能以砂屑岩为主。全岩锆饱和温度计约束岩浆温度分别为762~795℃(平均781℃)和769~773℃(平均771℃)。角闪石温压计约束白龙山闪长岩中角闪石结晶温度为718~760℃(平均734℃),压力介于125~208 MPa之间(平均151 MPa);俘虏沟闪长岩中的角闪石结晶温度为729~776℃(平均741℃),压力介于133~231 MPa之间(平均176 MPa)。白龙山闪长岩和俘虏沟闪长岩锆石LA-ICP-MS U-Pb年龄分别为(213.67±0.61) Ma (MSWD=1.4,n=39)和(211.73±1.02) Ma (MSWD=1.9,n=14)。大红柳滩二云母花岗岩中发育电气石、白云母和石榴子石等富铝矿物,明显富SiO2和K2O,贫MgO、CaO和TiO2,属于过铝质、高钾钙碱性岩浆系列,由壳源物质重熔而成,源区可能是泥质岩。全岩锆饱和温度计约束其温度为755~773℃(平均764℃)。所含锆石往往发育继承核,其年龄介于207~2490 Ma之间。最年轻的岩浆锆石约束岩浆侵位可能发生在(211.20±1.1) Ma (MSWD=0.34,n=10),这些岩浆锆石随后被热液增生边包裹,U-Pb年龄约束岩浆-热液事件发生在(185.10±0.89) Ma (MSWD=4,n=5),可能记录了后期伟晶岩侵位所诱发的热液活动。大红柳滩地区同时发育I型和S型花岗岩,形成于中温(734~781℃)、中压(151~176 MPa)的条件,岩浆-热液活动持续时间长达~33 Ma,为形成超大型规模矿床提供有利条件。  相似文献   

5.
西藏早侏罗世聂荣岩体中偏基性包体与酸性寄主岩的岩浆源区性质和岩石成因以及相互关系尚未得到很好约束,直接限制了对聂荣微陆块在早侏罗世特提斯构造岩浆演化中的作用的认识。为探讨这一问题,本文对采自聂荣地区的一对花岗岩及其闪长岩包体样品进行了锆石U-Pb定年和原位Hf同位素分析。寄主花岗岩的结晶年龄为185.1±1.5Ma,闪长岩包体的结晶年龄为183.6±1.1Ma,指示酸性岩浆和基性岩浆同时侵位。寄主花岗岩的锆石εHf(t)值介于-17.8~-0.9,其Hf同位素地壳模式年龄变化于1.3~2.4Ga,闪长岩包体的锆石εHf(t)值和Hf同位素地壳模式年龄值分别分布于-11.9~-2.9和1.4~2.0Ga,均表现出很大的变化范围。同时于~185Ma结晶的两种岩浆锆石Hf同位素的不均一性和继承锆石的出现,指示了聂荣微陆块早侏罗世中期发生了古老基底深熔或重熔的熔体和富集岩石圈地幔来源的岩浆间的混合,之后再与围岩混染的岩浆作用过程。  相似文献   

6.
马拉松多斑岩铜钼矿床是玉龙斑岩铜矿带中第二大的大型斑岩铜钼矿床,本文分析了岩体化学组成及用锆石LA-ICP-MS U-Pb法以及黑云母K-Ar法测定了成岩成矿体系同位素年代。赋矿岩体可分为早晚两期, 早期岩体主要由石英二长斑岩及碱长花岗斑岩组成,晚期岩体主要由碱长花岗斑岩组成。早期岩体和晚期岩体在化学组成上有一定的差异,早期岩体富Al2O3、MgO、CaO、Na2O、Fe 2O3、TiO2,晚期岩体则相对富SiO2及K2O;马拉松多早期岩体锆石LA-ICP-MS U-Pb年龄(36.9±0.4Ma, MSWD=1.52)与晚期岩体锆石LA-ICP-MS U-Pb年龄(36.9±0.3Ma, MSWD=1.38)相同,也和黑云母K-Ar年龄(36.9±0.6Ma)及前人的辉钼矿Re-Os年龄一致。早期和晚期岩体是在现有同位素体系难以区别的相同的时间间隔内脉动侵入形成的,马拉松多成岩成矿系统在很短时期内从高温(800℃,锆石U-Pb封闭温度)冷却至中低温(300℃黑云母Ar同位素体系的封闭温度),成岩成矿时间跨度小于1Ma。玉龙矿带主要赋矿岩体锆石年龄表明,玉龙斑岩铜矿带岩浆活动时间跨度4.3Ma内,约发生过四次成岩成矿事件。  相似文献   

7.
吕梁地区在华北克拉通前寒武纪研究中具有重要位置,出露大量的古元古代变质表壳岩和花岗质岩石,对研究华北克拉通古元古代地质演化历史具有重要意义。本次研究选择吕梁地区白家滩花岗片麻岩进行锆石和独居石U-Pb年代学以及锆石Hf同位素研究,2个花岗片麻岩的岩浆锆石U-Pb年龄分别为2182±16Ma和2185±24Ma,代表了其侵位时代。独居石U-Pb年龄分别为1898±7Ma和1899±14Ma,明显比锆石增生边的谐和207Pb/206Pb年龄(2180~2032Ma)年轻,说明独居石对后期变质作用的响应程度比锆石强,其U-Pb年龄更能反映白家滩花岗片麻岩经历了~1900Ma的退变质作用,与华北克拉通中部造山带的变质作用时间一致。花岗片麻岩的锆石Hf同位素亏损地幔模式年龄(tDM)为2473~2598Ma,两阶段亏损地幔模式年龄(tDMC)分别为2646~2839Ma,εHft)值分布于-1.3~+1.8之间,未显示同期幔源物质的加入,而是新太古代地壳物质部分熔融的产物,结合已有的古元古代中期(2.2~2.1Ga)的岩浆岩锆石Hf同位素数据,华北克拉通新太古代地壳在2.2~2.1Ga期间发生了广泛的重熔作用,这期岩浆活动在华北克拉通吕梁、中条、五台以及胶-辽-吉等地区广泛发育,可能形成于陆内裂谷环境。  相似文献   

8.
同位素地质年代学是探索地质体时空演化及地球动力学等问题的基础学科,应用最为广泛的当属含铀副矿物的U-Pb定年技术。榍石具有相对较低的U-Pb体系封闭温度,并广泛发育于岩浆岩、各类变质岩、热液成因岩石以及少量沉积岩中,是一种理想的中高温地质事件定年矿物。利用电感耦合等离子体质谱法(ICP-MS)测定榍石U-Pb年龄时,不可避免地要解决高普通铅以及元素分馏效应对测试的影响。本文对榍石LA-ICP-MS实验过程中的元素分馏行为进行研究,采用相同基体的标准样品与未知样品对比,发现了榍石不同颗粒之间元素分馏行为不一致的现象;同时采用不同的元素分馏校正方法,分别应用于锆石、独居石和榍石进行对比研究,认为分馏行为一致的副矿物定年可以采用"指数法"和"均值法"对数据进行校正,但是对于榍石这种分馏行为不一致的副矿物,定年时只有采用"截距法"对数据进行校正才可以获得正确的年龄。进而将此结论应用于秦岭造山带老牛山地区岩浆成因榍石样品,得到的结果与锆石年龄一致,表明"截距法"可以避免分馏行为不一致导致的校正不准确的问题。本研究成果为榍石LA-ICP-MS U-Pb定年方法的完善提供了一种思路。  相似文献   

9.
温泉钼矿床位于西秦岭造山带北缘,是西秦岭地区唯一斑岩型钼矿床。矿体产于花岗斑岩体及其与围岩接触带内。对温泉钼矿含矿花岗斑岩开展锆石U-Pb年代学与原位Hf同位素研究,有助于精确约束含钼花岗斑岩时代,揭示岩浆演化信息,深化温泉钼矿床成因的认识。本文利用LA-ICPMS锆石U-Pb定年方法,对温泉钼矿区含钼岩体进行精确同位素定年。结果表明:花岗斑岩的锆石环带结构明显,Th/U比值较大(0.41~0.88),为典型的岩浆锆石,含钼花岗斑岩侵位年龄为212.43~213.4 Ma,其侵入的似斑状二长花岗岩年龄(围岩)则为219.9 Ma,均属晚三叠世岩浆活动的产物。温泉矿区花岗斑岩锆石Hf同位素组成较为一致,εHft)值均为负值,介于-1.89~-0.63,平均-1.59,在εHft)-t图解中,样点集中分布于球粒陨石以及亏损地幔线之下,暗示其岩浆源区较单一,应为经改造过的地壳物质部分熔融的产物。二阶段模式年龄(TDM2)主要集中在1291~1408 Ma,表明中元古代地壳物质可能为岩体主要来源。  相似文献   

10.
对西藏西部日土县城以南-拉梅拉山口一带的花岗岩体开展了详细的岩相学、岩石地球化学和锆石U-Pb年代学及Hf同位素研究。所有样品铝饱和指数A/CNK集中在0.76~1.0之间,为准铝质类型。CIPW标准矿物组合为Q+Or+Ab+An+Di(或C)+Hy。在稀土元素配分图中呈现出右倾缓倾斜型的特征,轻稀土元素富集并出现较强的分馏作用,重稀土元素无分馏-轻微分馏。δEu在0.56~0.99范围之间,属于铕亏损型。大离子亲石元素出现分化,富集Rb、Pb、Th而亏损K、Ba,高场强元素Nb、Ta、Ti等明显亏损。获得钾长花岗岩、二长花岗岩及花岗闪长岩中岩浆结晶锆石的LA-ICP-MS U-Pb年龄分别为:79.4±0.4Ma、 81.0±0.5Ma和81.3±0.5Ma,结合锆石稀土元素和岩浆振荡环带特征及Th/U比值,上述年龄结果可代表岩石的结晶年龄,表明该套岩体为晚白垩世侵位的大型岩基。两件样品的锆石均具有正的Hf同位素初始比值εHft),两阶段Hf模式年龄(tDM2)分别介于547.5~658.0Ma、523.4~710.2Ma之间。分析认为该套岩体的物质来源应该为富角闪石的下地壳,可能为幔源岩浆首先侵入到地壳基底岩石中形成新生地壳,然后在温度约为700~800℃之间、压力<8kbar且富含流体的影响下,这种既有新生地壳又有古老基底地壳构成的混合地壳发生部分熔融而形成。这一结论与野外宏观露头上岩体中大量发育暗色微粒包体等直接岩石学证据相佐证。结合区域构造演化及岩体所处的大地构造位置,该套花岗岩体应该形成于洋壳闭合时的碰撞造山过程,其形成与侵位与北侧班公湖-怒江结合带的构造演化有成因上的联系,是班公湖-怒江特提斯洋向南的俯冲碰撞的产物。  相似文献   

11.
喻顺  田云涛 《地质学报》2023,97(1):278-290
榍石富含U和Th,是(U-Th)/He定年的理想矿物之一。本文以Fish Canyon Tuff榍石为例,开展了榍石He扩散行为和榍石(U-Th)/He定年实验方法研究。榍石分步加热扩散实验结果表明He扩散系数ln(D/a2)与温度倒数呈负相关,与期望的热活化扩散过程一致。测试Fish Canyon Tuff榍石(U-Th)/He年龄分布在28.3~24.6 Ma之间,平均值为26.7±1.2 Ma (1σ),Th/U分布在4.6~5.5之间,平均值为5.2±0.2,在误差范围内与国际上已出版数据一致,表明建立的榍石(U-Th)/He定年实验方法可靠。本次测试15粒榍石碎片外表层(~20μm)存在不同程度的磨蚀(即不完整晶体),且榍石表层磨蚀厚度随着等效半径的增加而增大。榍石碎片(U-Th)/He年龄介于完整晶体(U-Th)/He年龄和真实(U-Th)/He年龄之间,且随着榍石等效半径及表层磨蚀厚度(<20μm)的增大,(U-Th)/He年龄更接近真实年龄,这表明榍石(U-Th)/He年龄不确定度与等效半径大小和表层磨蚀厚度有关。  相似文献   

12.
Zr diffusion in titanite   总被引:2,自引:0,他引:2  
Chemical diffusion of Zr under anhydrous, pO2-buffered conditions has been measured in natural titanite. The source of diffusant was either zircon powder or a ZrO2–Al2O3–titanite mixture. Experiments were run in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. The following Arrhenius parameters were obtained for Zr diffusion parallel to c over the temperature range 753–1,100°C under NNO-buffered conditions: D Zr = 5.33 × 10−7 exp(−325 ± 30 kJ mol−1/RT) m2 s−1 Diffusivities are similar for experiments buffered at QFM. These data suggest that titanite should be moderately retentive of Zr chemical signatures, with diffusivities slower than those for O and Pb in titanite, but faster than those for Sr and the REE. When applied in evaluation of the relative robustness of the recently developed Zr-in-titanite geothermometer (Hayden and Watson, Abstract, 16th V.M. Goldschmidt Conference 2006), these findings suggest that Zr concentrations in titanite will be less likely to be affected by later thermal disturbance than the geothermometer based on Zr concentrations in rutile (Zack et al. in Contrib Mineral Petrol 148:471–488, 2004; Watson et al. in Contrib Mineral. Petrol, 2006), but much less resistant to diffusional alteration subsequent to crystallization than the Ti-in-Zircon geothermometer (Watson and Harrison in Science 308:841–844, 2005).  相似文献   

13.
Kent Brooks 《Geology Today》2019,35(5):196-200
Few people have heard of the mineral sphene (also called titanite), but it is nevertheless extremely widespread, occurring in most common rocks. It can be useful to the Earth scientist as it contains information on the timing, temperature and pressure of formation of many common rocks. It is also a source of titanium—and can sometimes be used as a gemstone.  相似文献   

14.
Synthetic titanite, CaTiOSiO4, and the series of (Ca1−x Na x )(Ti1−x Ta x )OSiO4 and Ca(Ti1−2x Ta x Al x )OSiO4 solid solutions have been prepared by ceramic methods, and their crystal structure determined by the Rietveld analysis. At ambient conditions, titanite can contain up to 20 mol% NaTaOSiO4 or 60 mol% Ca(Al0.5Ta0.5)OSiO4. These limits might differ in natural samples due to combination with substitutions involving fluorine and/or hydroxyl replacing oxygen together with vacancies at cationic sites. All cations located at the vii X- and vi Y-sites in the structures of tantalian titanite are disordered. Expansion of the <Si–O> bond from 1.618 to 1.621 Å in CaTi0.8Ta0.1Al0.1OSiO4 and CaTi0.6Ta0.2Al0.2OSiO4 to 1.644 Å in the CaTi0.4Ta0.3Al0.3OSiO4 titanite suggests the possible presence of some Al3+ in the tetrahedral site replacing Si4+ in the latter. All tantalian titanites crystallize in the space group A2/a. This implies that both single-site and complex double-site substitutional schemes induce P21/a A2/a phase transition(s). The (Ca1−x Na x )(Ti1−x Ta x )OSiO4 substitution scheme incorporates larger cations at both the vii X and vi Y sites, whereas the Ca(Ti1−2x Ta x Al x )OSiO4 scheme involves only vi Y-site (Al3+,Ta5+) cations with a slightly smaller “average” radius. Unit cell dimensions change insignificantly or increase incrementally with increase of average cationic radii in the (Ca1−x Na x )(Ti1−x Ta x )OSiO4 series, and with an insignificant decrease in the viR Y average cationic radii in the Ca(Ti1−2x Ta x Al x )OSiO4 series. Both Ta-doped titanite and CaTiOSiO4 consist of distorted polyhedra with the XO7, YO6 coordination polyhedra and the SiO4 tetrahedron in tantalian titanite being less distorted compared to those of the pure CaTiOSiO4.  相似文献   

15.
A thermobarometer for sphene (titanite)   总被引:9,自引:0,他引:9  
Sphene and zircon are common accessory minerals in metamorphic and igneous rocks of very different composition from many different geological environments. Their essential structural constituents, Ti and Zr, are capable of replacing each other to some degree. In this paper we detail the results of high pressure–temperature experiments as well as analyses of natural sphene crystals that establish a systematic relationship between temperature, pressure and Zr concentration in sphene. Calibrations of the temperature and pressure relationships are presented as a thermobarometer. Synthetic sphene crystals were crystallized in the presence of zircon, quartz and rutile at 1–2.4 GPa and 800–1,000°C from hydrothermal solutions. Crystals were analyzed for Zr by electron microprobe (EMP). The experimental results define a log-linear relationship between equilibrium Zr content (ppm by weight), pressure (GPa) and reciprocal absolute temperature: The incorporation of Zr into sphene was found to be rather sensitive to pressure effects and also to the effects of kinetic disequilibrium and growth entrapment that result in sector zoning. The Zr content of sphene is relatively insensitive to the presence of both REEs and F-Al substitutions in sphene. To supplement and test the experimental data, sphenes from seven rocks of well-constrained origin were analyzed for Zr by both EMP and ion microprobe (IMP). The sphene thermobarometer records crystallization temperatures that are consistent with independent thermometry. When applied to natural sphene of unknown origin or growth conditions, this thermobarometer has the potential to estimate temperatures with an approximate uncertainty of ±20°C over the temperature range of interest (600–1,000°C). The Zr-in-sphene thermobarometer can also be used in conjunction with the Zr-in-rutile thermobarometer to estimate both pressure and temperature of crystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Leslie A. HaydenEmail:
  相似文献   

16.
The paraelectric to antiferroelectric phase transition in titanite at ~500 K involves a displacement of the titanium atom from the center of the [TiO6] octahedron in the paraelectric phase (A2/a) to an off-center position in the antiferroelectric (P2 1/a) phase. We have carried out a detailed single crystal high temperature x-ray diffraction study of the phase transition including structure refinements at 294, 350, 400, 430, 440, 450, 500, 600, and 700 K. The unit cell dimensions show a pronounced hysteresis effect in the 450–500 K range on heating and cooling during the first cycle along with a reduction of the transition temperature, T c from 495 ± 5 K on heating to 445 ± 5 K on cooling. The hysteresis effect disappears on further heating and the superstructure reflections show residual intensities above T c (445 K). An order parameter treatment of the phase transition is presented in terms of Landau theory and induced representation theory. The Ti-displacements parallel and antiparallel to a are taken as the primary order parameter η, which transforms as the Y 2 + representation. A coupling of Y 2 + with T 1 + results in the linear-quadratic coupling of the spontaneous strain components, ? ij with η. The Ti-displacements are coupled linearly to the Cadisplacements. Both sets of displacements predicted from induced representation theory are observed experimentally. The phase transition is initially driven by the soft mode at the zone boundary point Y 2 + ; near T c critical fluctuations set in and an order-disorder mechanism finally drives the phase transition, whereby parallel and antiparallel Ti-displacements related by [0, 1/2, 1/2] in adjacent domains are dynamically interchanged. Immediately above T c , the high temperature (A2/a) phase is a statistical average of small dynamic antiphase domains of the low temperature (P2 1/a) phase. Vacancies and defects pinning the domain boundaries may drastically alter the transition behavior and affect the domain mobility.  相似文献   

17.
Redistribution of HFSE elements during rutile replacement by titanite   总被引:2,自引:0,他引:2  
Titanite growth at the expense of rutile during retrograde hydration of eclogite into amphibolite is a common phenomenon. We investigated an amphibolite sample from the Tromsø eclogite facies terrain in Northern Norway to gain insight into the trace element distribution between rutile and titanite during incomplete resorption of the rutile by titanite. Patchy compositional zoning of Al, Ti, and F in titanite relates to the presence of a fluid with variable Ti/Al and/or F during its growth. Laser ablation ICP–MS and electron microprobe data for high field strength elements (HFSE: Nb, Zr, Ta, and Hf) of rutile resorbed by titanite indicate a pronounced enrichment of these elements in the rim of a large single rutile crystal (~8 mm) and a systematic decrease towards uniform HFSE contents in the large core. HFSE contents of smaller rutile grains (~0.5 mm) and rutile inclusions (<100 μm) in the titanite overgrowth are similar or higher than in the rims of large rutile crystals. Element profiles from the rim inward demonstrate that HFSE enrichment in rutile is controlled by diffusion. HFSE ratios in diffusion-altered rutile show systematic variations compared with the uniform core composition of the large rutile. Modelling of Zr and Nb diffusion in rutile indicates that diffusion coefficients in rutile in fluid-dominated natural systems must be considerably higher than those determined experimentally at 1 bar in dry systems. Variations of HFSE contents in the newly formed titanite show no systematic spatial distribution. HFSE ratios in titanite and the rims of rutile are different, indicating different solid/fluid distribution coefficients in these minerals. Element fractionation by diffusion into the relict rutile and during fluid-mediated growth of new titanite could substantially change the HFSE budget of these minerals and could affect their use for geochemical tracing and other applications, such as Zr-based geothermobarometry.  相似文献   

18.
19.
 The heat capacity of end-member titanite and (CaTiSiO5) glass has been measured in the range 328–938 K using differential scanning calorimetry. The data show a weak λ-shaped anomaly at 483 ± 5 K, presumably associated with the well-known low-pressure P21/a ⇆ A2/a transition, in good agreement with previous studies. A value of 0.196 ± 0.007 kJ mol−1 for the enthalpy of the P21/a ⇆ A2/a transition was determined by integration of the area under the curve for a temperature interval of 438–528 K, bracketing the anomaly. The heat capacity data for end-member titanite and (CaTiSiO5) glass can be reproduced within <1% using the derived empirical equations (temperature in K, pressure in bars):
The available enthalpy of vitrification (80.78 ± 3.59 kJ mol−1), and the new heat capacity equations for solid and glass can be used to estimate (1) the enthalpy of fusion of end-member titanite (122.24 ± 0.2 kJ mol−1), (2) the entropy of fusion of end-member titanite (73.85 ± 0.1 J/mol K−1), and (3) a theoretical glass transition temperature of 1130 ± 55 K. The latter is in considerable disagreement with the experimentally determined glass transition temperature of 1013 ± 3 K. This discrepancy vanishes when either the adopted enthalpy of vitrification or the liquid heat content, or both, are adjusted. Calculations using Eq. (2), new P−V−T data for titanite, different but also internally consistent thermodynamic data for anorthite, rutile, and kyanite, and experimental data for the reaction: anorthite + rutile = titanite + kyanite strongly suggest: (1) the practice to adjust the enthalpy of formation of titanite to fit phase equilibrium data may be erroneous, and (2) it is probably the currently accepted entropy of 129.2 ± 0.8 J/mol K−1 that may need revision to a smaller value. Received: 30 December 1999 / Accepted: 23 June 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号