首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.  相似文献   

2.
Magnetic fabrics studies (AMS) are a useful tool in order to describe the distribution of deformation in orogenic areas where conventional techniques are difficult to apply, especially due to the lack of proper strain markers. In the present study, AMS and structural analysis are used to define the distribution of deformation in the Central Axial and Nogueres Zones, an area of strong structural changes (i) in the geometry of the antiformal stack defining the Pyrenean Axial Zone and (ii) the distribution of Alpine cleavage. The studied rocks are Lower-Middle Triassic red beds that crop out in three different stacked thrust units (Bielsa, Nogueres and Orri). Primary sedimentary fabrics are preserved in the uppermost thrust units (Nogueres Zone), but a high percentage of the sampling sites shows an overprint of Alpine compression on magnetic fabrics, with the magnetic lineation mostly parallel to the tectonic grain defined by compressional structures and the magnetic foliation showing different orientations between the poles to cleavage and bedding. The development of compressional fabrics strongly depends on the structural position of the sites, and two deformation gradients can be inferred: the southern margin of the Axial Zone (Orri and Bielsa units) shows strong internal deformation, increasing towards the North; farther north (in the restored cross-section), deformation is in general terms lower, but increases towards the basal thrust of the Nogueres Zone. The heterogeneous distribution of Alpine internal deformation indicates a preferred development of cleavage in the Variscan basement and overlying units of the southern margin of the Axial Zone (mainly in the Orri unit), that could be partly controlled by the tectonic load resulting from the stacking of thrust sheets.  相似文献   

3.
Evaluating magnetic lineations (AMS) in deformed rocks   总被引:3,自引:0,他引:3  
Magnetic lineation in rocks is given by a cluster of the principal axes of maximum susceptibility (Kmax) of the Anisotropy of Magnetic Susceptibility (AMS) tensor. In deformed rocks, magnetic lineations are generally considered to be the result of either bedding and cleavage intersection or they parallel the tectonic extension direction in high strain zones. Our AMS determinations, based on a variety of samples that were taken from mudstones, slates and schists from the Pyrenees and Appalachians, show that strain is not the only factor controlling the development of magnetic lineation. We find that the development and extent to which the magnetic lineation parallels the tectonic extension direction depends on both the original AMS tensor, which in turn depends on the lithology, and the deformation intensity. Rocks having a weak pre-deformational fabric will develop magnetic lineations that more readily will track the tectonic extension.  相似文献   

4.
The progressive deformation recorded in the magnetic fabric of sedimentary rocks was studied in the SE Rhenohercynian Zone (RHZ), eastern margin of the Bohemian Massif, Czech Republic. Almost 800 oriented samples of the Lower Carboniferous mudstones and graywackes were collected from the SSE part of the Czech RHZ, so-called the Drahany Upland. The anisotropy of magnetic susceptibility (AMS) is predominantly controlled by the preferred orientation of paramagnetic phyllosilicates, mainly iron-bearing chlorites. A regional distribution of the magnetic fabric within the Drahany Upland revealed an increasing deformation from the SSE to the NNW. In the SE, the magnetic fabric is bedding-parallel with magnetic lineation scattered in the bedding plane or trending N–S to NNE–SSW. Further to the NW, the magnetic foliation rotates from the bedding-parallel orientation to the orientation parallel to the evolving cleavage. This rotation is accompanied by a decrease of the anisotropy degree and the prolate nature of the anisotropy ellipsoids. The magnetic lineation is parallel to the strike of the bedding, bedding/cleavage intersection, pencil structure or the fold axes on a regional scale. In the NW part of the Drahany Upland, the magnetic foliation becomes parallel to the cleavage accompanied by an increase of the anisotropy degree and the oblate nature of the anisotropy ellipsoids. The increasing trend of deformation corresponds to the SSE–NNW increase in the degree of anchimetamorphism; both trends being oblique to the main lithostratigraphic formations as typically observed in the sedimentary rocks of the accretionary wedges. The SSE–NNW increase in deformation and anchimetamorphism continues to the Nízký Jeseník Mts., representing the northern part of the same accretionary wedge. The kinematics of deformation could not be unambiguously assessed. The observed magnetic fabric may reflect either lateral shortening or horizontal simple shear or a combination of both mechanisms. Regarding the subduction process, it seems that the sedimentary sequences of the Drahany Upland were subducted, partly offscraped and accreted frontally or partly underplated as opposed to the Nízký Jeseník Mts. where some return flow must have occurred.  相似文献   

5.
We are reporting the first paleomagnetic results from the Podhale Flysch, which crops out in the area between the Pieniny Klippen Belt and the Tatra Mts., where claystones and mudstones were drilled at 10 localities, mainly from subhorizontal strata. In all cases, the magnetic fabric was found to be typical of undeformed sediments, with well developed magnetic lineation (aligned with the sedimentary transport direction) at some of the localities; the dominant magnetic mineral was identified as magnetite, accompanied by iron sulphides. For six of the localities, with one exception for those with poorly developed lineation, we obtained statistically well-defined paleomagnetic mean directions, on AF or on combined AF and thermal demagnetization.The overall-mean paleomagnetic direction is D=298° 1=53° k=121, a95=6°, in tectonic coordinates. Similar direction was observed for Inner Carpathian flysch from the Levoča basin (Slovakia). We conclude, that the flysch of the two basins must have travelled a few hundred kilometres to the North, after the early Miocene tectonic phase: this displacement was accompanied by about 60° counterclockwise rotation with respect to Stable Europe.  相似文献   

6.
The shallow intrusive bodies and lava flows emplaced within the Permian upper red unit in the Anayet Massif, represent a magmatic episode that occurred about 255 Ma (Saxonian) in the Pyrenean Axial Zone (northern Spain). Anisotropy of magnetic susceptibility (AMS) measurements, in both igneous bodies and their host rocks, allow us to infer the existence of magnetic fabrics of tectonic origin linked to the main cleavage-related folding episode. The relationship between the susceptibility axes and the field structures is the criterion that permits to differentiate normal from inverse magnetic fabrics in the igneous samples. The structural interpretation of all AMS data taken from the igneous bodies and sedimentary host rocks, is in accordance with a folding model which include: (i) flattening associated with cleavage formation during fold amplification in incompetent layers (host pelites), responsible for a magnetic lineation at high angles with respect to the regional folding axis and (ii) buckling in competent (conglomerates and igneous bodies) levels, responsible for a magnetic lineation parallel to the regional fold axes.  相似文献   

7.
Late Palaeozoic deformation in the southern Appalachians is believed to be related to the collisional events that formed Pangaea. The Appalachian foreland fold and thrust belt in Alabama is a region of thin-skinned deformed Palaeozoic sedimentary rocks ranging in age from Early Cambrian to Late Carboniferous, bounded to the northwest by relatively undeformed rocks of the Appalachian Plateau and to the southeast by crystalline thrust sheets containing metasedimentary and metaigneous rocks ranging in age from late Precambrian to Early Devonian. A late Palaeozoic kinematic sequence derived for a part of this region indicates complex spatial and temporal relationships between folding, thrusting, and tectonic level of décollement. Earliest recognized (Carboniferous(?) or younger) compressional deformation in the foreland, observable within the southernmost thrust sheets in the foreland, is a set of large-scale, tight to isoclinal upright folds which preceded thrafing, and may represent the initial wave of compression in the foreland. Stage 2 involved emplacement of low-angle far-traveled thrust sheets which cut Lower Carboniferous rocks and cut progressively to lower tectonic levels to the southwest, terminating with arrival onto the foreland rocks of a low-grade crystalline nappe. Stage 3 involved redeformation of the stage 2 nappe pile by large-scale upright folds oriented approximately parallel to the former thrusts and believed to be related to ramping or imbrication from a deeper décollement in the foreland rocks below. Stage 4 involved renewed low-angle thrusting within the Piedmont rocks, emplacement of a high-grade metamorphic thrust sheet, and decapitation of stage 3 folds. Stage 5 is represented by large-scale cross-folding at a high angle to previous thrust boundaries and fold phases, and may be related to ramping or imbrication on deep décollements within the now mostly buried Ouachita orogen thrust belt to the southwest. Superposed upon these folds are stage 6 high-angle thrust faults with Appalachian trends representing the youngest (Late Carboniferous or younger, structures in the kinematic sequence.  相似文献   

8.
North Norfolk is a classic area for the study of glacial sediments with a complex glaciotectonic deformational history, but the processes leading to the formation of some structures can be ambiguous. Anisotropy of magnetic susceptibility (AMS) analyses, providing quantitative fabric data, have been combined with the analysis of visible structures and applied to the Bacton Green Till Member, exposed at Bacton, Norfolk. Thermomagnetic curves, low temperature susceptibility and acquisition of isothermal remanent magnetism (IRM) reveal that the magnetic mineralogy is dominated by paramagnetic phases. The magnetic foliation is parallel to fold axial planes and weakly inclined to bedding, whilst the magnetic lineation is orientated parallel to stretching, indicated by the presence of stretching lineations and the trend of sheath folds. Variations in the orientation of the magnetic lineation suggest that the Bacton section has been subject to polyphase deformation. After subaqueous deposition, the sequence was overridden by ice and glaciotectonically deformed which involved stretching initially north–south, then east–west. These results show that AMS can be used to detect strain in three dimensions through a glaciotectonite where paramagnetic mineralogy is dominant. This approach therefore provides further support to the use of AMS as a fast, objective and accurate method of examining strain within deformed glacial sediments.  相似文献   

9.
龙门山飞仙关断层传播褶皱磁组构特征及构造意义   总被引:3,自引:0,他引:3  
沿龙门山南段冲断前锋带飞仙关断层传播褶铍剖面钻取了270个磁组构定向岩芯样品,对其进行了磁性矿物与磁组构分析。通过等温剩磁和三轴热退磁实验确定了样品中的主要载磁矿物为赤铁矿。磁组构测试结果显示27个采样点的磁组构为中间组构与构造组构两种类型。通过对各点磁组构特征及各项磁组构参数进行详细分析,再结合断层传播褶皱运动学模型,得出断层传播褶皱形成过程中岩石应变及磁组构演化:断层扩展前的平行层缩短作用把原始的沉积组构改造成为中问组构;在断层扩展过程中,两翼地层的旋转抬升产生的简单剪切作用对地层磁化率各向异性产生影响,使得校正的磁化率各向异性度Pj值局部升高,以及在剪切变形强烈的区域形成构造磁组构。  相似文献   

10.
English summary Near the eastern base of the Taconic Range, in extreme southwestern Vermont, a complex of chlorite slate is exposed in the position of the floor of a thrust along which a mass of dolomite-limestone has been pushed from the east against, and over, the slate. In addition to the common structure, exhibiting westward-overturned open folds, with slip cleavage dipping eastward, about parallel with the axial pianos, the slate displays a number of subsidiary shears or thrust zones having the same orientation as the principal thrust. In these zones, a strong lineation as well as axes of small folds plunge E—SE, parallel with the direction of propagation of the thrust blocks. The origin of the lineation and lamination is believed to be identical with that of corresponding structures in rolled steel and glass.However, the formation of folds with axes parallel to the direction of thrust requires an additional shear stress acting perpendicularly to the direction of thrusting. The inhomogeneous composition, strength, and mobility of the flooring rocks are pointed out, and it is suggested that unequal rates of yielding of local rock masses below the thrust block generated these supplementary stresses, producing slight movements of small masses sideways. That this is a reasonable explantation is shown by experiments on salt dome structure byEscher andKuenen, in which also axes of folds and lineation parallel with the direction of maximum forward propagation were produced.  相似文献   

11.
通过野外观察、室内显微构造分析和磁组构测量方法,在桂北四堡地区浅变质地层中厘定出一条NE30°走向,南东倾,倾角约40°的大型左旋斜冲韧性剪切带——四堡韧性剪切带;该韧性剪切带内发育糜棱岩系列、糜棱面理、拉伸线理、A型褶皱、S-C组构、亚颗粒、显微分层及石英条带等宏观和微观构造特征;磁各向异性度测量结果显示四堡韧性剪切带由一宽约4 km的强应变带及边缘弱带组成,全带宽达10 km,长度超30 km;在对韧性剪切带运动学、构造年代学研究的基础上,结合区域地质资料,认为四堡韧性剪切带是华南加里东晚期华夏地块由南东向北西作低角度斜冲到扬子地块的产物。这一发现揭示了扬子地块与华夏地块碰撞拼合的方式,为深化华南构造演化提供了新资料。  相似文献   

12.
罗良  贾东  李一泉  邓飞  孙圣思 《地质学报》2008,82(6):850-856
磁组构是一种灵敏的应变指示计。单一方向应力作用下,在平行层缩短的初始阶段,磁线理与地层走向是一致的。然而,在构造叠加背景下弱变形的沉积岩地区,另一个(多个)不同方向的应力使得已经产生定向排列的磁性矿物发生旋转,表现为磁线理和与地层走向斜交。川西北盆地在新生代是一个典型的构造叠加区域,来自龙门山和米仓山的变形在此相互作用。本文在川西北盆地分3条剖面在18个采样点中采集了172个样品进行了磁组构研究。研究区内观察到3种弱变形的磁组构类型:沉积磁组构、初始变形磁组构和铅笔状磁组构。由于应变的叠加,由盆地内部向造山带前缘没有出现应变由弱到强的变化趋势,同时磁线理的方向也不一致。由盆地向造山带,来自米仓山的变形逐渐增强,磁线理从与地层走向一致转变成与地层走向斜交。  相似文献   

13.
本文对藏东昌都地区侏罗纪汪布组、东大桥组和小索卡组红层共71个采点开展了磁组构(AMS)研究。磁组构测试结果表明,早侏罗世汪布组岩石磁线理较磁面理发育,磁化率各向异性度较高,磁化率椭球最小轴K3散布于层面缩短方向,代表了与构造成因相关的磁组构;中侏罗世东大桥组和晚侏罗世小索卡组岩石则磁面理较磁线理发育,磁化率各向异性度较低,磁化率椭球最小轴K3与层面近垂直,指示了原生沉积磁组构。早侏罗世汪布组地层的磁组构揭示了其构造应力场方向为NE-SW向。中侏罗世东大桥组的磁组构指示了其沉积时的古水流方向为SE向(138.3°),而晚侏罗世小索卡组磁组构指示了其沉积时的古水流方向为NNW向(328.3°)。古水流方向的明显变化揭示了昌都地区从中侏罗世到晚侏罗世沉积物物源发生了相应的转变,表明昌都地区南早北晚的隆升过程。  相似文献   

14.
西秦岭北缘武山—鸳鸯镇构造带磁组构特征   总被引:2,自引:0,他引:2  
构造与磁组特征揭示出武山-鸳鸯镇构造带为一条复合性断裂带,变形样式表现为花状构造形态。野外及显微构造特征表明,先期韧性变形为右行剪切,发育于中、深构造层次;66个构造岩样品的磁化率椭球形态分析表明,其以平面和压扁应变为主,总体较高的磁化率各向异性度表现了构造带的强变形特征;磁化率椭球主轴方位显示NW和NEE走向两组磁面理的存在,暗示高应变剪切带在平面上可能以共轭或网格状形态出露,锐夹角分线近EW向;高角度磁面理及较为发育的低倾伏角磁线理暗示了沿构造带近EW向的走滑剪切,部分高倾伏角磁线理可能与构造带的挤压和(或)转换挤压相关,而相对集中的磁面理与相对分散的磁线理也表明了构造带的平面及压扁应变体制。强烈的右行转换挤压奠定了西秦岭北缘现今的反"S"型区域构造,表明碰撞造山过程中,西秦岭诸中、小块体一定程度的向西挤逸。中、新生代沿构造带继承性的发育以西秦岭北缘(渭河)断裂为中心的一系列正花状左行走滑构造,构成青藏高原东北边缘物质逃逸及应力释放与调整的重要边界。  相似文献   

15.
A method of kinematic analysis of structures, microstructuresand mineral preferred orientations, initially devised in the study of peridotites, has been applied to crustal rocks bearing evidence of large strains produced in metamorphic environments. Three tectonic lineaments (Angers-Lanvaux, Montagne Noire and Maydan) were selected. They illustrate a general situation arising in continental crusts when they are deformed by ductile transcurrent fault systems.The Angers-Lanvaux structure is bilaterally symmetric; its dominant feature is the horizontal stretching lineation which is parallel to the fold axes. The foliation and slaty cleavage in the most surficial formations wrap around the axis of the whole structure. The folds in the slates away from the axis also exhibit axes parallel to the general trend, but no stretching lineations. These folds are attributed to crustal shortening in a direction normal to the ductile fault. In the Montagne Noire recumbent folds are thrusted away from the axis of the structure over at least 25 km. The metamorphism is also centered on the structure and symmetrically reduced away from it. The core of the structure is occupied by a strongly lineated orthogneiss, cut by a late intrusive granite. The Maydan axial zone displays clear evidence of partial melting at various scales within the deformed gneisses: (1) in gashes perpendicular to the stretching lineation which in these anatectic formations tends to plunge at more than 45°; (2) in bands of deformed pegmatites; and (3) possibly in granites which on the one hand intrude the surrounding formations and on the other converge with increasing deformation on the fault zone. The quartz preferred orientations and microstructures in quartzite layers from Angers indicate that the plastic flow plane and direction lie, respectively, close to the foliation and lineation, the slight departure is ascribed to a flow with a rotational shear component.All this suggests a general model for the origin of such ductile zones. The horizontal relative displacement of crustal blocks along a ductile band is responsible for its overall steeply dipping foliation and horizontal lineations. Viscous heating progressively tends to concentrate the plastic flow along its axis. It is also responsible for the development of metamorphism and of anatexis at depth; the partially melted rocks tend to rise, building at shallower depth the arched structure in the axis of the ductile zone, with a continuing flowage parallel to this axis probably now in the solid state; they can also intrude the surrounding terrain as undeformed batholiths. The folds parallel to the stretching lineation in the axial zone are explained by the fact that, due to the escape of anatectic melts, the formations at depth flow in a narrowing channel. The upwelling of the axial structure induces a compression with folding in the surrounding sedimentary formations and gravity nappe sliding away from the axis.  相似文献   

16.
The coalescence and spatial variability of different thrust‐related folding mechanisms involving the same mechanical multilayer along a curved thrust system are documented in this study. The field‐based analysis of thrust‐related folds spectacularly exposed in the Gran Sasso thrust system, Central Apennines of Italy, allowed us to reconstruct the interference fold pattern between fault‐bend and fault‐propagation folding. These two thrust‐related folding mechanisms exhibit spatial variability along the differently oriented ramps of the curved Gran Sasso thrust system, passing from one style to the other. Their selective development is controlled by contrasting styles of compressional normal‐fault reactivation related to positive tectonic inversion. Fault‐bend and fault‐propagation folding interact with a characteristic interference fold pattern in the salient apex zone of the curved thrust system due to their synchronous/in‐sequence growth. This interference fold pattern might be helpful and predictive when reconstructing lateral variations in different thrust‐related folds in similar subaerial or submarine thrust belts.  相似文献   

17.
The Teloloapan volcanic arc in SW Mexico represents the easternmost unit of the Guerrero Terrane. It is overthrust by the Arcelia volcanic unit and is thrust over the Guerrero–Morelos carbonate platform. These major structures result from two closely related tectonic events: first, an eastward verging, ductile deformation (D1) characterized by an axial-plane schistosity (S1) supporting an E–W trending mineral stretching lineation (L1) and associated with synschistose isoclinal, curvilinear folds (F1). Numerous kinematic indicators such as asymmetrical pressure-shadows, porphyroclast systems, and micro-shear bands (S–C structures) indicate a top-to-the-east shear along L1. This first deformation was followed by another ductile event (D2) that produced a crenulation cleavage (S2) associated with westward overturned folds (F2), hence showing that the vergence of D2 is opposite to that of D1. Regionally, both D1 and D2 deformations have been identified east and west of the Teloloapan unit, in the Arcelia volcanic rocks as well as in the Mexcala flysch of Late Cretaceous age overlying the Guerrero–Morelos platform. This implies that all three units were deformed and thrust simultaneously, during the Late Cretaceous or Paleocene, prior to the deposition of the overlying, undeformed Eocene red beds of the Balsas group.  相似文献   

18.
The Lower-Middle Triassic Aghdarband Basin, NE Iran, consists of a strongly deformed arc-related marine succession deposited along the southern margin of Eurasia in a highly mobile tectonic context. This basin is a key-area for the study of the Cimmerian events, as the Triassic units show severe deformations, which occurred short time after the collision of Iran with Eurasia, and were sealed by the Middle Jurassic succession. In this work, we document the structural setting and evolution of this area, based on detailed mesoscopic structural analyses of faults and folds, paleostress reconstruction and revision of the Triassic stratigraphy. The Triassic sequences are deeply involved in a N-verging thrust stack interacting with an important left-lateral transpressional fault zone characterized by strike-slip faults, vertical folds and high angle reverse faults generating intricate positive flowers. Systematic folds asymmetry indicates that they developed in a left-lateral transpressional zone coeval to thrust imbrication to the south, due to a marked strain partitioning.The extent of the transpressional zone shows that important left-lateral movements developed parallel to the belt during the Cimmerian collision, in response to oblique convergence between Iran and Eurasia. Inversion of Triassic syn-sedimentary faults, possibly inherited from Palaeozoic structures of the Kopeh Dagh basement and favouring strain partitioning, is suggested by unconformities, significant differences in the sedimentary successions, repeated olistoliths, scarp-related coarse breccias and rapid tectonic drowning, occurring especially along the northern tectonic boundary of the basin. Paleostress analyses point to a complex stress pattern showing a 45° rotation of the stress field along the left-lateral fault system, related to a complete deformation partitioning in two domains respectively characterized by pure reverse dip-slip and strike-slip motions. The main direction of compression, possibly oriented NE–SW in present days coordinates, favoured the development of large shear zones disrupting the eastern portion of the Cimmerian orogen.  相似文献   

19.
In this work, we report the results of combined geological, structural, and anisotropy of magnetic susceptibility (AMS) studies carried out on Quaternary deposits in the Picentini Mountains, southern Apennines (Italy). The study concerns four small continental basins, Acerno, Tizzano, Iumaiano, and Piano del Gaudo, related to fluvial–lacustrine depositional environments, ranging in altitude from 600 to 1,200 m a.s.l. and strongly incised during recent time. Stratigraphic and structural analyses, integrated by low- and high-field anisotropy of magnetic susceptibility (AMS), show that the formation of these basins has been controlled by extensional and transtensional tectonics. Most of the AMS sites exhibit a well-defined magnetic foliation parallel to the bedding planes. A well-defined magnetic lineation has also been measured within the foliation planes. In the Iumaiano, Tizzano, and Piano del Gaudo basins, magnetic lineations cluster around NNE–SSW trend and are parallel to the stretching directions inferred by structural analysis of faults and fractures. On the basis of structural, sedimentological, and high-field AMS data, we suggest a tectonic origin for the magnetic lineation, analogously to what has been observed in other weakly deformed sediments from Neogene and Quaternary extensional basins of the Mediterranean region. Our results demonstrate that onset and the evolution of the investigated basins have been mainly controlled since lower Pleistocene by NW–SE normal and transtensional faults. This deformation pattern is consistent with a prevalent NE–SW extensional tectonic regime, still active in southern Apennines, as revealed by seismological and geodetic data.  相似文献   

20.
四川盆地是扬子地块上的一个多旋回类前陆盆地,盆地边缘长期剧烈的构造活动控制着上三叠统须家河组的沉积作用。通过地表剖面和岩芯观察,首次在该盆地上三叠统须家河组地层中识别出微裂缝、微褶皱层、[JP2]微断层、液化砂岩构造、球—枕构造和角砾岩等典型的软沉积变形构造的地质记录,这些变形构造可能与印支构造运动期的地震活动有关。越靠近断裂带附近,软变形构造呈明显增加的趋势,表明震积岩的分布与龙门山和米仓山—大巴山构造活动有关。因此,研究该盆地须家河组震积岩,对了解控制盆地边界的龙门山和米仓山—大巴山造山带的活动史具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号