首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
主要利用实验的方法,并结合计算,对淮南煤田各研究矿区次生生物成因和热成因混合煤层气的比例进行了对比估算。结果显示:两种方法估算的研究区煤层气的混合比例较为一致。淮南煤田混合煤层气中次生生物成因气所占比例较大,最高达到了79%,最低的也占到了43%。同时,国内外的研究也表明,煤层中后期次生生物气的生成可明显提高煤储层的含气量。因此,淮南煤田中后期次生生物气的生成对矿区煤层气资源的贡献重大。  相似文献   

2.
低煤阶煤层气作为一种非常规天然气资源,具有良好的勘探开发前景。我国低煤阶煤层气资源丰富,进行低煤阶煤层气系统演化分析,对其富集成藏及开发具有重要的理论意义。鄂尔多斯盆地煤层甲烷的碳同位素δ13C1为–33.1‰~–80.0‰,氢同位素δCH4为–235‰~–268‰。该盆地侏罗系煤层气藏主要有次生生物气与热成因气构成的混合型煤层气藏和热成因气藏两种类型。据构造热事件、煤层气组分及成因,结合不同阶段的煤层埋深、变质程度和生气特征等,将鄂尔多斯盆地侏罗系低煤阶煤层气系统演化划分为4个阶段:煤系浅埋–原生生物气阶段﹑煤系深埋–热成因气阶段﹑煤系抬升–吸附气逃逸散失阶段﹑煤系局部沉降–次生生物气补充阶段。其中,煤系深埋–热成因气阶段和局部沉降–次生生物气阶段是低煤阶煤层气资源的主要形成阶段。次生生物气的补充是鄂尔多斯盆地侏罗系低煤阶煤层气成功开发的重要气源。鄂尔多斯盆地侏罗系煤层气藏应属于单斜式富气成藏模式。   相似文献   

3.
中国煤层气成藏作用研究进展与述评   总被引:2,自引:0,他引:2  
秦勇 《高校地质学报》2012,18(3):405-418
中国以成藏作用为核心的煤层气基础地质研究近些年取得显著进展。本源菌条件下褐煤生物气模拟、矿物/元素催 化生气作用、无烟煤层重烃极度异常原因、煤层次生生物气等的研究成果,深化了对煤层气多元化成因的学术认识。在更 为广泛的盆地和更加深入的层次上探讨了煤层气成藏作用的宏观地质过程及其控制因素,经典煤层气成藏作用理论得到发 展。提出了原创性的煤层气成藏效应研究思路,从地层能量角度探讨了煤层气成藏作用的实质,提出了某些新的学术观 点,初步探讨了深部煤层气成藏作用的特殊性。我国煤层气地质条件复杂多变,诸多基础地质问题尚待解决,近期探讨的 重点在于宏观动力学方面的地应力场效应和深度效应,以及微观动力条件方面的煤级效应和粒度效应,涉及到深部、构造 煤、低煤级煤等资源量巨大的煤层气成藏领域。同时,含煤地层非常规气(煤系气)的共生成藏关系以及共采中的基础地 质问题,也将是今后的一个重点研究方向。  相似文献   

4.
低阶煤层气在国外有规模开发成功的案例,我国低阶煤层气资源丰富,但其勘探开发进展缓慢。新疆后峡盆地煤层气勘探程度较低,为进一步认识后峡盆地中–低阶煤煤层气成藏条件,指导勘探实践,根据研究区内地震、地质及已钻探井的煤岩分析化验和排采生产资料进行总结分析。结果表明,该区构造较为复杂,煤层厚度较大(4.1~24.3 m),发育较稳定,含气量差异较大(1.16~12.30 m3/t),物性较好,渗透率(1.61~13.30)×10?3 μm2,渗透性较好;并且存在热成因、次生热成因、混合成因及生物成因4种煤层气成因类型,结合构造演化、水文地质及煤层顶底板保存条件,形成了深层热成因、常规圈闭次生热成因及中浅斜坡生物气3种成藏模式,每一种成藏模式代表了不同的煤层气富集过程。认为研究区中–低阶煤煤层气在匹配的构造、水文及顶底板封盖条件下能够形成有利的资源富集区;3种成藏模式中,深层热成因及常规圈闭次生热成因成藏模式更有利于聚集成藏,其对应的区域是今后勘探开发有利区。   相似文献   

5.
吐哈盆地低煤阶煤层气地质特征与成藏控制因素研究   总被引:3,自引:0,他引:3  
我国低煤阶煤层气资源丰富,气煤以下的低煤阶煤层气资源量15.13×1012m3。迄今为止尚无成功开发先例,地质成藏基础研究亟待加强。论文通过对吐哈盆地煤层气成藏条件、成藏特征分析,探讨了地质构造、聚煤作用、煤系特征、生物气形成与保存等低煤阶煤层气成藏控制因素,初步确定了吐哈盆地煤层气成藏类型及其分布特征,把吐哈盆地煤层气成藏模式划分为盆内凹陷成藏模式、盆缘陡坡成藏模式和盆缘缓坡成藏模式3种类型,根据成藏过程的匹配特征把煤层气藏类型划分为储-逸型低压逸散式、储-运-逸型运移储集式两种类型,该划分方案有助于指导低煤阶煤层气成因研究与资源勘探开发。  相似文献   

6.
在前人研究成果基础上.开发了多层叠置含煤层气系统成藏演化史数值模拟软件,并利用该软件对贵州织纳煤田水公河向斜多层叠置含煤层气系统进行了试算。研究结果表明,软件计算结果能够较好的反映煤层气成藏演化历程。通过研究获得的计算机软件和多层叠置含煤层气系统成藏模拟技术方法有助于复杂条件下煤层气成藏过程的研究,并为其勘探开发提供科学依据。  相似文献   

7.
生物成因煤层气的生成及其资源意义   总被引:13,自引:1,他引:13  
生物成因煤层气一般可分为原生和次生生物成因,它们在生成机理上有许多相似之处,但也有所不同,导致后期保存和同位素组成上的差异。研究指出,原生生物成因气不能被大量保留在煤层中,气田中的生物成因气多为次生生物成因气;次生生物成因煤层气分布比较普遍,含量较为丰富,且生物成因煤层气埋藏深度浅,勘探成本低,因此次生生物成因煤层气具有不容忽视的巨大资源潜力。  相似文献   

8.
国际煤层气组成和成因研究   总被引:15,自引:0,他引:15  
煤层气已成为一种新兴的非常规天然气资源。煤层气是成煤物质在煤化过程中生成并储集于煤层中的气体。按其成因类型分为生物成因气和热成因气。生物成因气有原生和次生两种类型,原生生物成因气一般在低级煤中生成,很难保存下来。次生生物成因气常与后来的煤层含水系统的细菌活动有关。热成因煤层气的生成始于高挥发份烟煤(Ro=0.5%~0.8%)。与分散的Ⅰ/Ⅱ型或Ⅲ型干酪根生成的气体相比,煤层气的地球化学组成变化较大,反映了控制煤层气组成和成因的因素多而复杂,主要的影响因素包括煤岩组分、煤级、生气过程和埋藏深度及相应的温度压力条件。此外,水动力等地质条件和次生作用等也影响着煤层气的组成。  相似文献   

9.
针对淮南煤田复杂的煤系天然气地质条件,以区域构造演化为主线,结合盆地模拟和最新钻探成果(潘气1井),深入探讨了淮南煤田构造演化阶段以及构造控制下的煤系天然气成藏过程和赋存特征。结果表明:淮南煤田晚古生代成煤期以来经历了稳定沉降(C2-T2)、构造形变(T3-J3)、伸展隆升(K-E)和坳陷沉积(N-Q)四个构造演化阶段;在经历了晚石炭-中三叠世的沉降埋藏之后,淮南煤田煤系有机质热演化在三叠纪末期达到最大值,生成大量的热成因气,在侏罗纪-古近纪持续隆升剥蚀和新近纪以来的坳陷沉积后,潘气1井现今煤系最大埋深超过了2 000 m;淮南煤田总体表现为压性构造特征,对煤系天然气资源保存有利,内部发育的小型正断层,一定程度上改善了煤系储层物性,其中潘集煤矿外围地区是淮南煤田最为有利的煤系天然气勘查开发区域。  相似文献   

10.
皇甫玉慧 《地质论评》2019,65(Z1):153-154
正吐哈(吐鲁番—哈密)—三塘湖盆地低煤阶煤层气资源丰富,但低煤阶煤层气成藏规律认识不足。本文在分析吐哈—三塘湖低煤阶煤层气含气性和成因的基础上,从水文地质条件和构造条件等方面,探讨了研究区低煤阶煤层气成藏的重要条件,提出该区的成藏模式,明确低煤阶煤层气勘探方向,对研究区后续的煤层气勘探开发具有一定的借鉴作用。  相似文献   

11.
Coalbed methane (CBM) is a kind of burgeoning and enormously potential clean energy resource, and the temperature of the thermogenic CBM generation is close to that of the partial annealing zone (PAZ) of apatite fission tracks (AFT). In this study the thermo-tectonic history of the Huainan Coalfield and the potential CBM resource were studied and discussed by using the AFT method. The AFT data indicate that the apparent ages of AFT vary from 45.5 to 199.1 Ma. They are younger than the ages of their host strata (255–1800 Ma) except one sample, and the single-grain ages of AFT can be classified as a single age group for each sample. In combination with the geological setting, modeling results of the AFT ages, average lengths, and the thermal history based on the AFT single-grain ages and length distributions, some preliminary conclusions can be drawn as follows: (1) at least three thermo-tectonic events (in the periods of ∼240, 140 and 80 Ma, respectively) have occurred in the study area since the Late Paleozoic. The occurrence of both the first (during 240–220 Ma) and second (during 160–120 Ma) thermo-tectonic events is possibly responsible for the establishment of the patterns of gas generation and reservoir formation. The second thermo-tectonic event also led to slight accumulation of hydrocarbons and generation of thermogenic gas; (2) the AFT ages of most coal-bearing strata lie between 50 and 70 Ma. They should represent the cooling ages and the ages of inferred uplift and denudation, as well as the possible CBM release history. Therefore, the maximum burial depth of coal-bearing strata and the denudation thickness of the overlying strata are over 3000 and 2000 m in the Upper Cretaceous and Paleogene series, respectively; and (3) subsequently, a spot of secondary biogenic and scarcely thermogenic gas generation occurred due to negligible sedimentation during the Neogene and Quaternary periods. Thus, it can be presumed that subsequent tectonism would destroy the CBM reservoir after its formation in the Huainan Coalfield, especially in its structural development region. These AFT data may be helpful for a better understanding of the thermo-tectonic history of the Huainan Coalfield, as well as of CBM generation, storage and release in the Huainan Coalfield.  相似文献   

12.
Taking insight into genetic mechanisms of coalbed methane (CBM) can provide an effective approach for evaluating the value of CBM resources. In this study, the geo-temperature and the thermal subsidence history were used to investigate the effect of the present geothermal field characteristic on the genetic mechanisms of CBM at the Huaibei Coalfield. The results showed that the Permian coal strata in the study areas had a relatively low geo-temperature (< 50°C), high vitrinite reflectance (Ro,max; 0.75%-1.2%) and a coal rank typical of intermediate-high metamorphic bituminous. Comprehensive analyses of the characteristics of the present geothermal field indicate that the CBM at the Huaibei Coalfield are dominated by secondary biogenic gases. Furthermore, the genetic mechanism towards CBM was further proposed based on the tectonic evolution history: (1) Tectonic thrusting contributed to Ro,max values ranging from 0.5% to 3.0%, with maximum geo-temperatures of 140–180°C, which resulted in the generation of thermogenic CBM. (2) An extensional regime contributed to gradual uplift of the Permian coal-bearing strata, with the gradual escape of CBM at burial depths greater than 700m. (3) A large number of faults and hydrodynamic environments greatly promoted the microbial degradation of the early thermogenic gases, resulting in generation of secondary biogenic gases.  相似文献   

13.
晋城煤层气藏成藏机制   总被引:3,自引:0,他引:3  
通过晋城煤层气的规模开发、压裂煤层气井的解剖、井下煤层瓦斯抽放、构造地应力场研究、煤储层大裂隙系统“CT”式解剖与煤层气封闭保存条件研究, 发现3#煤储层内部存在大量煤层气包, 构造微破裂作用促使煤层气包之间广泛合并联通, 煤层气包内部储层的非均质性弱化, 渗透率增加, 煤层气包内部的游离气体比例增加, 流体压力系统边界逐渐清晰并形成煤层气藏. 揭示煤层气藏的成藏机制, 认识煤层气藏的内部细节特征, 促进了该区的煤层气开发技术进步, 提高了井下煤层瓦斯的抽放效率.   相似文献   

14.
珲春盆地煤层气取得工业突破对我国低煤阶含煤盆地的煤层气勘探具有重要意义。通过对珲春盆地低煤阶煤层气成藏条件的深入剖析,探讨了低煤阶煤层气富集的主控因素及其成藏模式。结果表明,珲春盆地具有煤阶低、煤层多、煤层薄的特点,构造作用、沉积特征和岩浆岩侵入是其富集成藏的主控因素。盆地西部的褶皱和断层伴生带不仅为生物气创造有利环境,而且为煤层气二次成藏提供场所,形成"连续褶皱"富气模式;沼泽和天然堤微相的垂向叠置,使得作为煤层直接顶底板的泥岩和致密砂岩对煤层气起到更好的封闭作用;局部辉绿岩侵入体促使煤层再次生气,同时大大改善了煤岩的物性。因此,珲春盆地西部是煤层气高产富集区,具有巨大勘探开发潜力。   相似文献   

15.
准噶尔盆地东南部低煤阶煤层气富集条件及主控因素   总被引:2,自引:0,他引:2  
准噶尔盆地煤层气资源丰富。其中,准东南地区煤层分布稳定,厚度大,埋深适中,含气性较好,是煤层气勘探有利区。 然而,准东南地区近年来的煤层气勘探没有取得理想效果,对低煤阶煤层气富集主控因素认识不足是其主要原因之一。本 文通过对煤层气地质特征和富集条件的分析,认为准南地区煤岩演化程度高,水文条件较好,有次生生物气及深部热解气 的补充,气源充足,富集条件好;准东地区尽管煤层厚度大,但煤岩演化程度低,地下水矿化度高,不具备生物气补充条件, 且缺乏区域盖层,富集条件较差,导致煤层含气量低。进一步分析认为,构造、水文和盖层是准南地区煤层气富集的主控因素, 有利的构造部位控制着深部热解气源,水文地质条件控制着次生生物气的补给,盖层控制了煤层气的保存条件。  相似文献   

16.
为了建立断陷盆地的低煤阶煤层气成藏模式,从二连盆地群的霍林河盆地地质条件与煤层气地质特征入手,探讨该类盆地煤层气富集规律。研究结果显示:霍林河盆地煤层厚度可达80 m,煤层含气量为1.6~5.62 m3/t,瓦斯风化带深度为450~500 m;煤层的分布特征受同沉积构造与沉积环境控制,盆地内部小型凹陷与隆起决定着煤层的发育位置和煤层埋藏深度,基底的整体抬升确定了瓦斯风化带的位置;翁能花向斜与西南部向斜处,煤层厚度和埋藏深度均较大,煤层顶底板岩性为泥岩,其受到后期构造影响小,是煤层气成藏的有利地带。   相似文献   

17.
以华北陆块盆-山构造与岩石圈岩浆热结构演化研究为基础,以区内不同富集机制的含煤区域为研究对象,对华北典型地区盆-山演化、岩石圈转型及其与煤层气富集的关系进行了深入探讨。研究表明,华北典型地区盆-山动力学过程从中生代开始经历了挤压盆-山阶段、挤压盆-山向伸展盆-山转换阶段以及伸展盆-山阶段;华北岩石圈结构演化则经历了岩石圈增厚与稳定过程、岩石圈转型过程、岩石圈快速减薄过程等,且自古生代以来至少经历了两次以上具有时空不均一性的岩石圈转型。沁水盆地和两淮煤田的构造—热动力学环境有利于煤层气富集,且在挤压与伸展作用的转换和叠加过程中形成的构造过渡带是煤层气富集的有利构造单元。沁水盆地煤层气富集特征是岩浆—热作用有利于煤层气储集,而一定的构造变形有利于煤层气的渗流和开采;两淮煤田的强构造作用和后期叠加的张性应力场有利于煤层气的富集和储层的增渗,可在构造煤发育区寻找煤层气开发的有利区域。  相似文献   

18.
延川南区块属于深部高阶煤煤层气藏,受地质条件影响,区块单井产能差异大。结合煤层气开发动态资料,分析区块煤层气井富集高产主控地质因素。研究表明,气井产能受“构造、水动力、煤体结构”三因素控制,构造控制煤层气富集成藏,矿化度表征水动力强弱并影响煤层气保存,煤体结构制约储层改造。高产井主要位于埋深800~1 200 m的局部微幅隆起带翼部以及构造平缓区,地层水矿化度(3~10)×104 mg/L,原生–碎裂煤厚度大于2.5 m,日产气量大于1 000 m3;中产井位于埋深大于1 200 m的万宝山西部构造平缓区,矿化度大于10×104 mg/L,日产气量500~1 000 m3;而低产井主要靠近中部Ⅲ级断层以及局部Ⅳ级断层发育的断裂–凹陷带,矿化度低于0.3×104 mg/L,原生–碎裂煤厚度小于2.5 m,日产气量低于500 m3。区块产能的平面变化证实,构造是深部煤层气高产的主要控制因素。深部煤层气藏构造活动不发育的条件下储层渗透率极低,可改造性差,难以获得高产,构造活动的增强达到了改善储层目的,背斜轴部附近产生裂隙增加储层渗透性,易于煤层气富集和储层改造,局部小断层形成微裂缝,有利于煤层气解吸渗流,但是,构造活动较剧烈的断层以及凹陷带附近形成煤层气逸散通道,不利于煤层气的富集高产。   相似文献   

19.
The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, whil  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号