首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gondwana and the associated peri-Gondwana fragments cover an area which isabout two-thirds of the area of all continents above the 2000 m bathymetric contour. The Gondwana continents formed by break-up during a geologically short period (Jurassic to Tertiary times), coinciding with the eruption of flood basalts. The uplift caused by associated plumes probably provided the extra stresses necessary for continental separation. It is unclear whether plumes alone were able to fragment Gondwana. By contrast, the smaller, more numerous, peri-Gondwana fragments are generally elongate and their period of formation spans the whole of the Phanerozoic. Their shapes are tentatively attributed to trench suction and associated effects caused by south dipping slabs acting mostly on the northern margin of Gondwana; their migration to retreat of the hinge lines of the subduction zones generally northwards. Gondwana's position during the Cambrian to Triassic interval is uncertain. The most recent apparent polar wander paths (APWPs), based on high quality palaeomagnetic data, are incompatible with the distributions of corals, tillites and the Clarkeia shelly fauna of Silurian age. Somewhat surprisingly, a new APWP based on all available pal˦omagnetic poles is in much better agreement with the fossil and sediment distributions even though many poles have not been magnetically tested. A solution to the ‘Pang˦a problem’ is proposed, in which it is suggested that many of the Gondwana poles for the period 340-200 Ma have been remagnetised. However, all the APWPs give improbable polar positions for some Early Cambrian Moroccan archaeocyathids. Rates of change of pole position for the new modified APWP (‘apparent drift rates’) are similar to post-Triassic rates, implying that plate driving forces have not changed much during the Phanerozoic.  相似文献   

2.
The final assembly of the supercontinent Gondwana during the Pan-African orogenic episodes (ca. 550–520 Ma) almost simultaneously took place with the Cambrian explosion that is best manifested by a number of Cambrian Burgess Shale-type Lagerstätten in South China. The relationship between South China and Gondwana during the Cambrian is far from consensus. Burgess Shale-type Lagerstätten may have potential importance for the paleogeographic reconstruction. However, such Lagerstätten have been known in large number only in Laurentia and South China, far less common in Gondwana and other continents. Burgess Shale-type Lagerstätten in South China are not evenly spaced through the Cambrian. They appear to be concentrated in the Lower Cambrian, particularly in the Canglangpuian and Qiongzhusian stages, much reduced in number from the uppermost Lower Cambrian. Of ten reported such Lagerstätten, only the Kaili biota (basal Middle Cambrian) is known to be younger than Early Cambrian. This reduction could be explained by the fact that vast areas of siliciclastic facies in both the western plate interior (platform) and the eastern slope basin during most time of Early Cambrian (Meishucunian to Canglangpuian) is evolved into carbonate facies at the very end of Early Cambrian (Longwangmiaoian). It has been known from this study that both siliciclastic platform facies and slope basin facies (shale basin) could preserve soft-bodied fossils. Cambrian Burgess Shale-type Lagerstätten in South China are of great significance for providing a sequences of exceptionally preserved biota in a chronological succession. Comparison of such Lagerstätten in a chronological framework may give us more details on the Cambrian explosion events.  相似文献   

3.
A paleomagnetic study of the late Middle to possibly early Late Cambrian Liberty Hills Formation in the Ellsworth Mountains, Antarctica, reveals a stable magnetization with positive fold and reversal tests. The paleopole is based on 16 sites from volcanic and sedimentary rocks and lies at lat 7.3 degrees N and long 326.3 degrees E (A95=6.0&j0;). The new paleomagnetic data support the view that the Ellsworth Mountains are part of a microplate-the Ellsworth-Whitmore Mountains crustal block-that rotated independently of the main Gondwana continental blocks during breakup. The Liberty Hills pole differs from both previous poles recovered from Cambrian rocks in the Ellsworth Mountains and from the available Gondwana reference pole data. Our pole indicates a more northerly prebreakup position for the Ellsworth Mountains than previously suggested, contradicting the overwhelming geologic evidence for a prebreakup position close to southern Africa. The reasons for this are uncertain, but we suggest that problems with the Gondwana apparent polar wander path may be important. More well constrained, early Paleozoic paleomagnetic data are required from the Ellsworth Mountains and the Gondwana continents if the data are to constrain further the Middle-Late Cambrian location of the Ellsworth-Whitmore Mountains block.  相似文献   

4.
扬子地块泥盆纪—石炭纪古地磁新结果及其古地地理意义   总被引:15,自引:1,他引:15  
张世红  朱鸿等 《地质学报》2001,75(3):303-313
本文通过对扬子地块西南缘贵州独山-平塘地区泥盆-石炭纪316块定向岩心样品的系统退磁处理,揭示出晚侏罗世、新生代两期重磁化成.73个岩心样品,分布在早一中泥盆世(17个)、晚泥盆世(25个)、早石炭世(24个)和中-晚石炭世(7个)4个统计单元,得到了最可能的原生剩磁。结合已有的古地磁数据,修订了扬子地块极移曲,纯利 移曲线拟合的结果表明,扬子地块在早古生代是冈瓦那大陆的组成部分,与印度-喜马拉雅-澳大利亚地区临近。晚泥盆世、冈瓦那大陆发生大规模顺时针旋转,扬子地块开始与之分离。  相似文献   

5.
《Precambrian Research》2006,144(3-4):297-315
Geochemical data from clastic rocks of the Ossa-Morena Zone (Iberian Massif) show that the main source for the Ediacaran and the Early Cambrian sediments was a recycled Cadomian magmatic arc along the northern Gondwana margin. The geodynamic scenario for this segment of the Avalonian-Cadomian active margin is considered in terms of three main stages: (1) The 570–540 Ma evolution of an active continental margin evolving oblique collision with accretion of oceanic crust, a continental magmatic arc and the development of related marginal basins; (2) the Ediacaran–Early Cambrian transition (540–520 Ma) coeval with important orogenic magmatism and the formation of transtensional basins with detritus derived from remnants of the magmatic arc; and (3) Gondwana fragmentation with the formation of Early Cambrian (520–510 Ma) shallow-water platforms in transtensional grabens accompanied by rift-related magmatism. These processes are comparable to similar Cadomian successions in other regions of Gondwanan Europe and Northwest Africa. Ediacaran and Early Cambrian basins preserved in the Ossa-Morena Zone (Portugal and Spain), the North Armorican Cadomian Belt (France), the Saxo-Thuringian Zone (Germany), the Western Meseta and the Western High-Atlas (Morocco) share a similar geotectonic evolution, probably situated in the same paleogeographic West African peri-Gondwanan region of the Avalonian-Cadomian active margin.  相似文献   

6.
华南地块的地极移动曲线及其地质意义   总被引:12,自引:1,他引:12       下载免费PDF全文
林金录 《地质科学》1987,(4):306-315
结合最近获得的古地磁数据,作者重新计算编制了华南地块的地极移动曲线,进而讨论了华南和华北地块在早古生代的地理位置,二者最后拼合的时代,以及华南地块和欧亚大陆北部两条极移曲线之间的系统偏差等问题。  相似文献   

7.
8.
The chemical composition of metamorphosed siliciclastic rocks in the Orlica-?nie?nik Dome (Bohemian Massif) identifies the main sources for the Neoproterozoic [the M?ynowiec Formation (MF)], Early Cambrian [the Stronie Formation (SF)] and Late Cambrian/Early Ordovician [the Goszów quartzites (GQ)] sediments. The MF developed from erosion of a Cadomian magmatic arc along the northern Gondwana margin. The variegated SF, with supra-subduction affinities, shows chemical characteristics pointing to erosion of the freshly exhumed Cadomian orogen and detritus deposition in the back-arc basin. The very different chemical features of the GQ indicate deposition in a basin sited on a passive continental margin. The explanation proposed for the observed changes in chemical composition involves three main stages: (1) The pre ~540 Ma evolution of an active continental margin and related back-arc basin ceased with the collision and accretion of the magmatic arc to the Gondwana margin; (2) Early Cambrian rift to drift transition (540–500 Ma) and development of a depositional basin filled with detritus derived from remnants of the magmatic arc; (3) Peri-Gondwana break-up leading to the formation of shallow-water passive margin depositional basins filled with quartz-rich detritus resembling Early Ordovician Armorican quartzites known from other parts of the Variscan Belt.  相似文献   

9.
The Antarctic Ross Orogen was built up during the early Paleozoic in the framework of the convergence between the Paleo-Pacific oceanic plate and the Gondwana continental margin. Models for the Ross Orogen in northern Victoria Land are based on terranes having a variable provenance with respect to the margin. However, recent studies provide evidence for the occurrence of different pieces of the lithospheric puzzle: (i) the Wilson continental magmatic arc, representing the main part of the active Gondwana margin, (ii) the Bowers arc–backarc system, (iii) the Admiralty crustal ribbon including continental material of the Wilson forearc, and (iv) the newly discovered, Cambrian oceanic magmatic Tiger arc, along the Ross Sea coast. An updated model is presented in which, after the Early Cambrian magmatic activity of the Wilson arc, a retreat of the subduction zone in the Early–Middle Cambrian gave way to boudinage of the Wilson forearc, trenchward arc migration, opening of the Bowers backarc basin and inception of the outboard Tiger subduction zone. Renewed convergence resulted in the development of the Middle Cambrian Bowers arc, closure of the backarc and deep underthrusting of portions of it at the Middle–Late Cambrian. Finally, in the latest Cambrian to earliest Ordovician, fast exhumation was coupled in the north with erosion and sediment shed to the northeast, and with extension and potassic magmatism in central and southern Victoria Land.  相似文献   

10.
Major eustatic fall has been invoked to explain Lower–Middle Cambrian boundary sandstones and faunal replacements on a number of Cambrian palaeocontinents. This proposal has been tested on the Moroccan and Spanish margins of West Gondwana and found to be inadequate to explain stratigraphical developments. In these regions, sandstone intervals long presumed to be regressive and late Early Cambrian in age are now shown to be early Middle Cambrian, and composed of a lower regressive and an overlying transgressive sandstone separated by a regional unconformity. Only the lower tidalites (i.e. Tazlaft Formation in Morocco and lower Daroca sandstones in Spain) record the Hawke Bay eustatic regression in West Gondwana. The Tazlaft is overlain by a newly recognized, unconformably overlying sandstone (Talelt Formation) that onlapped southern Morocco with reactivation of a pull‐apart or transcurrent regime. Up to 150 m of erosion on uplifted blocks in the High Atlas range and foundering of the Souss Basin to the south preceded onlap and deposition of the volcanic‐rich Tatelt, the correlative and depositional analogue of the upper Daroca and lower Valdemides Formations in northern Spain. With folding and erosion, a type 1 depositional sequence boundary also caps the Tatelt at its contact with an overlying, lower Middle Cambrian mudstone‐dominated succession. This unconformity probably occurs in Spain within the Valdemiedes Formation and corresponds to a faunal discontinuity called the ‘Valdemiedes geoevent’. The Iberian ‘Daroca regression’ and Moroccan ‘Asrir regression’ are misnomers, as the sandstones on which they are based are composite units with a lower regressive interval that records eustatic fall and an upper transgressive unit that records epeirogenically driven onlap.  相似文献   

11.
Two distinct Cambrian magmatic pulses are recognized in the Ossa-Morena Zone (SW Iberia): an early rift-(ER) and a main rift-related event. This Cambrian magmatism is related to intra-continental rifting of North Gondwana that is thought to have culminated in the opening of the Rheic Ocean in Lower Ordovician times. New data of whole-rock geochemistry (19 samples), Sm–Nd–Sr isotopes (4 samples) and ID–TIMS U–Pb zircon geochronology (1 sample) of the Early Cambrian ER plutonic rocks of the Ossa-Morena Zone are presented in this contribution. The ER granitoids (Barreiros, Barquete, Calera, Salvatierra de los Barros and Tablada granitoid Massifs) are mostly peraluminous granites. The Sm–Nd isotopic data show moderate negative εNdt values ranging from ?3.5 to +0.1 and TDM ages greatly in excess of emplacement ages. Most ER granitoids are crustal melts. However, a subset of samples shows a transitional anorogenic alkaline tendency, together with more primitive isotopic signatures, documenting the participation of lower crust or mantle-derived sources and suggesting a local transient advanced stage of rifting. The Barreiros granitoid is intrusive into the Ediacaran basement of the Ossa-Morena Zone (Série Negra succession) and has yielded a crystallization age of 524.7 ± 0.8 Ma consistent with other ages of ER magmatic pulse. This age: (1) constrains the age of the metamorphism developed in the Ediacaran back-arc basins before the intrusion of granites and (2) defines the time of the transition from the Ediacaran convergent setting to the Lower Cambrian intra-continental rifting in North Gondwana.  相似文献   

12.
During the Late Precambrian–Early Cambrian times, the borders of the Kerdous inlier were affected by normal faults where thick conglomerates (Ouarzazate Group: PIII), grading progressively upwards into Cambrian marine sediments, were accumulated along their hanging walls. This tectonic activity persisted during the Early Cambrian and was accompanied by a magmatic activity resulting mainly in the emplacement of continental tholeiitic basalts. These tectono-sedimentary and magmatic events are related to the crustal extensional episode that affected the northwestern Gondwana margin during the opening of the Iapetus Ocean during Late Proterozoic times. To cite this article: A. Soulaimani et al., C. R. Geoscience 336 (2004).  相似文献   

13.
During the Cambrian, two types of continental margins occurred around Gondwana. The eastern margin (Antarctica, Australia and southern South America) was characterized by a narrow continental shelf with a steep slope separating the shallow water environment from a deep-oceanic one accompanied by mafidultramafic volcanics. The western margin was characterized by a wider continental shelf, probably passing gradually to an unknown outer basin. This comprised three main domains: the Asiatic shelf, composed of distinct cratonic blocks, presumably separated from each other by deeper-water/ volcanic intracontinental basins; the European shelf, characterized by the development of shallow intracontinental siliciclastic basins; and the Americanc-African shelf, morphologically and depositionally uniform. The distinction of these two Gondwana continental margins expresses their different geodynamic behaviour during Cambrian extensional tectonics. In fact, the sedimentary/palaeogeographic evolution, suggests the establishment of an active Pacific-like margin in the eastern domain, and the tentative establishment of a divergent Atlantic-like margin, in the westem one.  相似文献   

14.
The Proto-Tethys was a significant post-Rodinia breakup ocean that eventually vanished during the Paleozoic. The closure timing and amalgamation history of numerous microblocks within this ocean remain uncertain, while the Early Paleozoic strata on the northern margin of the Yangtze Block archive valuable information about the evolution of the Shangdan Ocean, the branch of the Proto-Tethys. By comparing the detrital zircon U-Pb-Hf isotopic data from Cambrian, Ordovician, and Silurian sedimentary rocks in the northern Yangtze Block with adjacent blocks, it was found that detrital zircons in Cambrian strata exhibit a prominent age peak at ∼ 900–700 Ma, which indicates that the primary source of clastic material in the basin was the uplifted inner and margin regions of the Yangtze Block. In the Silurian, abundant detrital material from the North Qinling Block was transported to the basin due to the continuous subduction and eventual closure of the Shangdan Ocean. This process led to two distinct age peaks at ∼500–400 Ma and ∼900–700 Ma, indicating a bidirectional provenance contribution from both the North Qinling Block and the Yangtze Block. This shift demonstrates that the initial collision between these two blocks occurred no later than the Silurian. The northern Yangtze Basin transitioned from a passive continental margin basin in the Cambrian to a peripheral foreland basin in the Silurian. Major blocks in East Asia, including South Tarim, North Qilian, North Qinling, and North Yangtze, underwent peripheral subduction and magmatic activity to varying degrees during the late Early Paleozoic, signifying the convergence and rapid contraction of microplates within northern Gondwana and the Proto-Tethys Ocean. These findings provide new insights on the tectonic evolution of the Proto-Tethys Ocean.  相似文献   

15.
新疆古生代构造—生物古地理   总被引:4,自引:0,他引:4  
郭福祥 《新疆地质》2001,19(1):20-26
通过6幅图表达了新疆古生代板块的构造-生物古地理区系。早古生代,包括劳伦,波罗的、西伯利亚和哈萨克斯坦4陆块的亚帕特斯古陆(Iapetusa)群,与由其余陆块构成的冈瓦纳古陆群隔原特提斯洋相对峙。石炭-二叠纪,欧美、安加拉、太平洋和冈瓦纳4古陆共存并立。西伯利亚和哈萨克斯担板块经历了早古生代亚伯特斯古陆、晚古生代安加拉古陆和早二叠世晚期以来欧亚大陆3个发展阶段。塔里木、中朝、华南-东南亚板块经历了早古生代冈瓦纳古陆、晚古生代太平洋古陆和早二叠世晚期以来欧亚大陆3个发展阶段。指出在中晚寒武世和晚奥陶世哈萨克斯坦板块靠近塔里木、中朝和华南-东南亚板块;在早古生代其余时期它接近西伯利亚板块。伊犁和托克逊-雅满苏地体是在中泥盆世之前裂解自塔里木板块,尔后在早二叠世晚期接近安加拉古陆。塔里木板块北东缘北山地区在早二叠世早期首先靠近安加拉古陆。塔里木与西伯利亚-哈萨克斯坦板块之间缝合时代大抵上和土耳其-中伊朗-冈底斯与华南-东南亚板块之间缝合时代一致。缝合事件发生在早二叠世早期,而相应的构造运动出现在早晚二叠世之交。  相似文献   

16.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   

17.
在青藏高原东北缘的祁连-阿尔金-昆仑早古生代造山系中,夹杂有一些前寒武纪大陆块体,这些地块的组成、性质和演化既蕴含有超大陆聚散的重要信息,也对原特提斯体系的洋陆格局、造山类型和造山机制有重要启示意义。本文综合近年来这些前寒武纪微陆块的研究进展,结合我们所获得的新的研究资料,梳理了这些前寒武纪微陆块变质基底的岩石组成、构造热事件及年代格架,得出以下主要认识:(1)这些前寒武纪微陆块普遍遭受早古生代造山事件的改造并发生再活化。它们或者作为早古生代原特提斯洋的活动大陆边缘,被洋壳俯冲有关的弧岩浆和变质作用改造,以早古生代大陆弧的形式存在;或者被早古生代碰撞造山过程中的陆内变形、增厚地壳及相关的区域变质作用、深熔作用和碰撞型花岗岩所改造。(2)在这些前寒武纪微陆块中,仅仅欧龙布鲁克地块保存有早前寒武纪的变质基底,具有克拉通性质。中元古代以前,欧龙布鲁克地块的变质基底与华北克拉通(特别是阿拉善地块)和塔里木克拉通具有相似的岩石组成和年代格架;而晚中元古代到新元古代,所有的前寒武纪微陆块与华南陆块和塔里木陆块的亲缘性更强。(3)青藏高原北缘早古生代造山系中的大部分前寒武纪微陆块可能在罗迪尼亚超大陆解体时已从冈瓦纳大陆北部分离,而柴达木地块记录了泛非期造山作用的构造热事件,可能在泛非造山期(530Ma)以后才从冈瓦纳大陆分开;在青藏高原东北部,晚新元古代-早古生代并不存在统一的原特提斯洋,原特提斯洋的打开是穿时的。  相似文献   

18.
The analysis of the basement of the Andes shows the strong Grenville affinities of most of the inliers exposed in the different terranes from Colombia to Patagonia. The terranes have different histories, but most of them participated in the Rodinia supercontinent amalgamation during the Mesoproterozoic between 1200 and 1000 Ma. After Rodinia break-up some terranes were left in the Laurentian side such as Cuyania and Chilenia, while others stayed in the Gondwanan side. Some of the terranes once collided with the Amazon craton remained attached, experiencing diverse rifting episodes all along the Phanerozoic, as the Arequipa and Pampia terranes. Some other basement inliers were detached in the Neoproterozoic and amalgamated again to Gondwana in the Early Cambrian, Middle Ordovician or Permian times. A few basement inliers with Permian metamorphic ages were transferred to Gondwana after Pangea break-up from the Laurentian side. Some of them were part of the present Middle America terrane. An exceptional case is the Oaxaquia terrane that was detached from the Gondwana margin after the Early Ordovician and is now one of the main Mexican terranes that collided with Laurentia. These displacements, detachments, and amalgamations indicate a complex terrane transfer between Laurentia and Gondwana during Paleozoic times, following plate reorganizations and changes in the absolute motion of Gondwana.  相似文献   

19.
Different hypotheses have been proposed to account for the geologic evolution of the southwestern margin of Gondwana in the Early Paleozoic, involving accretion and displacement of different terranes in a protracted convergent margin. In order to constrain and understand the kinematic and paleogeographic evolution of the Pampia terrane a paleomagnetic study was carried out in different Cambrian to Devonian units of the Eastern Cordillera (Cordillera Oriental) and the Interandean Zone (Interandino) of NW Argentina. Paleomagnetic poles from the Campanario Formation (Middle to Upper Cambrian): 1.5°N 1.9°E A95 = 9.2° K = 37.46 N = 8; and Santa Rosita Formation (Lower Ordovician): 8.6°N 355.3°E A95 = 10.1° K = 26.78 n = 9, representative of the Pampia terrane, are interpreted to indicate a Late Cambrian significant displacement with respect to the Río de la Plata and other Gondwana cratons. A model, compatible with several geological evidences that explains this displacement in the framework of the final stages of Gondwana assembly is presented. We propose a simple dextral strike-slip kinematic model in which Pampia and Antofalla (? Arequipa?) blocks moved during Late Cambrian times from a position at the present southern border of the Kalahari craton into its final position next to the Rio de la Plata craton by the Early Ordovician.  相似文献   

20.
Yigui  Shihong  Franco  Yu  Yuanhou   《Gondwana Research》2009,16(2):255
The Machaoying fault zone extends along the southern margin of the North China Craton (NCC) and controlled the regional structures and hydrothermal mineral systems in this area. The fault underwent at least two major deformational phases, as revealed by macro- and micro-structural observations from a well-developed segment of the fault in the Hongzhuang–Baitu area, located south of the Xiong'er Mountains. Early ductile deformation is characterized by thrusting from north to south, which was subsequently overprinted by late brittle faulting. Syntectonic strain shadows of biotite are preserved around rotated porphyroclasts of quartz amygdales in mylonite. The biotite yields a 40Ar–39Ar plateau age of 524.9 ± 1.9 Ma, which is interpreted as the time of regional thrusting along the Machaoying fault zone. The thrusting may be temporally correlated with an Early Cambrian discontinuity in sedimentation observed in the rocks sequences of the NCC, suggesting a compressional regime in this area and a craton-wide tectonic event. Many 540–500 Ma tectonic events have been previously identified in the Qinling–Qilian–Kunlun Orogenic Belt of central China and in massifs in northeastern China, both of which surround the NCC, and some of these were interpreted to be associated with assembly of Gondwana. However, paleomagnetic data indicate that the NCC was unlikely to have been connected with Gondwana in the Early Cambrian and thus our new biotite date cannot record deformation along the Gondwanan margin. Dating of K-feldspar from a quartz–K-feldspar vein formed along one of the brittle faults of the Machaoying fault zone yields a much younger 40Ar–39Ar plateau age of 119.5 ± 0.7 Ma. This is a minimum age for the brittle deformation along the southern margin of the NCC, which also overlaps the age of widespread gold and molybdenum mineralization in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号