首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
煤层气碳同位素阶段演化的模拟实验研究及其应用   总被引:1,自引:0,他引:1  
煤层气聚集存在着“累积聚气”和“阶段聚气”两种形式。通过热模拟实验,研究了“阶段聚气”的煤层气甲烷碳同位素的的影响因素和不同成熟度区间煤层气甲烷碳同位素组成特征。结果表明,“阶段聚气”的煤层气碳同位素组成与该演化阶段的起始Ro值和末尾Ro值密切相关,起始和末尾Ro值越高,煤层气碳同位素组成越重;相同成熟度区间,高升温速率下形成的煤层气碳同位素组成比较轻;煤岩母质性质影响煤层气碳同位素组成;在相同成熟度区间,泥炭形成的甲烷碳同位素组成最轻。确定了成煤有机质从Ro为1.2%、1.6%、2.0%、2.4%、2.8%分别演化至Ro为3.0%和4.0%(3.7%)之间生成的煤层气甲烷碳同位素组成,这为研究不同成熟度区间生成的煤层气成因提供了科学数据。并且,将这些研究结果应用到沁水盆地南部煤层气研究,认为该地区煤层气是在中侏罗世末以后(Ro>1.6%)聚集而成,具有“阶段聚气”的特征。  相似文献   

2.
煤层气化学组分、甲烷碳氢同位素特征对煤层气成因、分布规律和煤层气资源评价具有重要意义。为了查明河东煤田北部兴县地区山西组、太原组煤层甲烷及二氧化碳成因,采集研究区煤层气井解吸气样,通过组分分析、CH4碳氢同位素和CO2碳同位素测试,根据煤层气成因图版,分析了煤层气稳定同位素的地质影响因素,揭示了研究区煤层气成因。结果表明,区内主力煤层的甲烷碳同位素存在明显差异:8煤甲烷δ13C1值介于-55.1‰~-44.2‰,平均为-49.2‰;13煤δ13C1值介于-65.7‰~-55.7‰,平均为-59.8‰。同一煤层内甲烷碳同位素呈现出随煤层埋深增加而变重、随水动力条件增强变轻的特点;甲烷碳同位素偏轻,重烃组分偏少,表明受到一定因素或次生作用的影响。8煤以热成因气为主,13煤以次生生物成因气为主。研究区8煤δ13C (CO2)介于-17.3‰~-4.8‰,13煤δ13C (CO2)介于-26.3‰~-6.9‰,二氧化碳为煤热演化初期或最近一次煤层抬升再沉降后煤中有机质热裂解产生。研究成果为明确该区煤层气勘探开发方向提供了理论依据。   相似文献   

3.
根据沁水煤层气甲烷碳同位素的组成与分布特征 ,从煤层甲烷碳同位素在煤层气解吸—扩散—运移中的分馏效应 ,结合水文地质条件和构造条件 ,讨论了煤层甲烷碳同位素在煤层气勘探中的地质意义 ,认为沁水煤层气δ13C1值不仅总体上较高 ,而且随埋深增大而增高 ,说明沁水煤层气存在因煤层抬升而卸压所导致的煤层气解吸—扩散—运移效应 ,从而形成了该区甲烷碳同位素在平面上的分带现象。  相似文献   

4.
为进一步厘清沁水盆地高阶煤煤层气富集机理,综合运用地球化学分析测试技术,系统刻画了沁水盆地南部煤层含气量和煤层气分子组成特征,初步探讨了其影响因素。研究结果显示沁水盆地南部各区块煤层含气量呈南高北低分布趋势。煤层含气量与煤化程度具有显著正相关性,这可能与煤层内有机孔隙发育关系密切;与煤层厚度,尤其薄煤层厚度(≤2m)具显著正相关性,当煤层厚度大于2m时这种相关性反而不甚明显,表明研究区煤层气赋存状态以吸附态为主,薄煤层中气体饱和度相对较低;含气量与煤层埋深和上覆地层剥蚀量之间在南部区块没有显著相关性,在北部区块呈现出弱相关性,表明煤层气主要以吸附态存在,北部区块保存状况可能相对较好。研究区煤层气属于典型干气,南部区块煤层气甲烷含量和稳定碳同位素值均较北部区块高,非烃气体含量则相对较低。煤化作用程度是控制煤层气分子组成和煤层甲烷稳定碳同位素组成的重要因素。煤层气吸附-解吸-扩散-运移散失可导致煤层气富含CO_2,甲烷稳定碳同位素值偏重。次生生物气的生成对部分煤层甲烷稳定碳同位素组成影响显著。该研究对于寻找沁水盆地煤层气"甜点"区具有重要意义。  相似文献   

5.
张建博  陶明信 《沉积学报》2000,18(4):611-614
根据沁水煤层气甲烷碳同位素的组成与分布特征,从煤层甲烷碳同位素在煤层气解吸-扩散-运移中的分馏效应,结合水文地质条件和构造条件,讨论了煤层甲烷碳同位素在煤层气勘探中的地质意义,认为沁水煤层气δ13C1值不仅总体上较高,而且随埋深增大而增高,说明沁水煤层气存在因煤层抬升而卸压所导致的煤层气解吸-扩散-运移效应,从而形成了该区甲烷碳同位素在平面上的分带现象。  相似文献   

6.
煤层含气性是决定煤层气勘探开发的重要参数,煤层气甲烷碳同位素能有效反映煤层气的赋存条件。根据煤层气井实测含气量数据,剖析了山西沁水盆地煤层含气量分布特征,建立了煤层含气量与煤层埋深、地质构造之间的相关关系和模型,探讨了煤层甲烷碳同位素分布特征及其对含气性分布的指示作用。研究表明:西山区块2号煤层平均含气量6.87 m3/t,8号煤层平均含气量8.4 m3/t,9号煤层平均含气量7.6 m3/t,煤层含气量主要受煤层埋深和构造形态的影响。研究区8号煤层甲烷碳同位素为–65.33‰~–40.94‰,平均–45.88‰,煤层含气量与甲烷碳同位素之间成正相关关系,随着含气量的增加,甲烷碳同位素也逐渐变重。煤层甲烷碳同位素主要受控于煤层气解吸–扩散–运移效应和地下水动力作用等。   相似文献   

7.
恩洪向斜煤层重烃气浓度极端异常,但重烃气来源至今不甚清楚。为此,本文通过对恩洪向斜煤样自然解吸阶段的 密集取样和分析测试,对重烃气成因进行了探讨。结果显示,恩洪煤样自然解吸气组分分馏规律明显,重烃气浓度随解吸 时间延长而显著增高;在自然解吸过程中,甲烷碳同位素组成略有变重,重烃气碳同位素组成没有明显变化,烷烃气碳同 位素始终呈现为正碳同位素系列;自然解吸气组分浓度与碳同位素组成之间具有良好的相关关系,但甲烷与重烃气的相关 趋势截然相反。因此,恩洪向斜煤层气主要起源于煤中有机质的热成因,但不排除部分甲烷具有次生生物成因的可能性。  相似文献   

8.
煤层气的成因是石油地质学研究的热点.煤层气聚集存在着"累积聚气"和"阶段聚气"两种形式, 对于"阶段聚气" 的煤层气成因判识的地球化学研究还很薄弱.通过森林沼泽泥炭在不同温度下制备的样品进行热模拟实验, 首次获得了不同演化阶段甲烷、乙烷和二氧化碳的碳、氢同位素组成和演化规律.发现随着原始样品演化程度越高, 生成的甲烷和乙烷的碳、氢同位素组成具有变重的趋势; 同时, 甲烷和乙烷碳同位素组成明显地受原始样品演化程度的影响, 而氢同位素组成主要与成熟度密切相关.确定了成煤有机质在不同演化阶段生成的气体碳、氢同位素组成.首次获得了成煤有机质不同演化阶段热解气体碳、氢同位素组成与Ro之间的关系式.建立了甲烷与乙烷的碳、氢同位素之间的关系式, 形成了甲烷碳、氢同位素组成相关图.根据这些为研究不同成熟度区间生成的煤层气成因提供了科学数据, 为"阶段聚气"的煤层气地球化学特征认识及其成因判识提供了科学依据.并且, 将这些研究结果应用到我国沁水盆地南部煤层气研究, 认为该地区煤层气是在中侏罗世以后聚集而成, 具有"阶段聚气"的特征, 证明了热模拟研究成果对自然界煤层气成因的判识具有重要的科学意义.   相似文献   

9.
煤层气的成因研究可以为煤层气勘探与开发提供科学依据,然而,煤层气的氢碳同位素组成受多种因素的影响,以前较多的研究是成气母质性质和成熟度对煤层气氢碳同位素的影响,对于成煤物质形成的气候环境对热解煤层气同位素的影响尚不清楚.热解模拟了高纬度寒冷干旱和低纬度热带湿润环境的草本泥炭,对热解烃类气体的氢碳同位素组成及其差异性进行了研究.研究结果表明:与低纬度热带湿润环境中形成的草本泥炭相比较,高纬度寒冷干旱环境的草本泥炭热解甲烷、乙烷和丙烷具有轻的氢同位素组成和重的碳同位素组成,并且从泥炭连续热解至Ro分别为2.5%、3.5%和5.5%时,甲烷、乙烷和丙烷δD值分别平均降低-17‰~-10‰、-32‰~-28‰和-25‰~-17‰,甲烷和乙烷δ13C值分别平均升高2.9‰~3.6‰和0.9‰~1.1‰.认为这种同位素差异起因于气候环境对形成泥炭的植物氢碳同位素组成的影响.建立了高纬度寒冷干旱和低纬度热带湿润环境中形成的成煤有机质热解烃类气体氢碳同位素组成与Ro之间的关系式,同时也建立了烃类气体的碳和氢同位素之间的关系式.这些研究成果为不同气候环境下形成的成煤有机质生成的煤层气成因研究提供了科学依据.   相似文献   

10.
黄陵矿区属于煤油气共生矿区,区内多个工作面发生底板气异常涌出。为探明底板异常涌出气体的成因类型,采集煤层底板气样44个、2号煤层气样12个,进行甲烷碳同位素(δ13C1)、乙烷碳同位素(δ13C2)及甲烷氢同位素(δDCH4)等地球化学参数测试。测试分析结果表明,煤层底板异常涌出气不是来源于2号煤层,其甲烷碳同位素(δ13C1)测值为-52.20‰~-42.80‰,乙烷碳同位素(δ13C2)值为-37.20‰~-29.01‰,成因类型属油型气。通过对区域烃源岩分布及地层裂隙系统的分析,认为黄陵矿区底板异常涌出气可能来源于三叠系延长组烃源岩。   相似文献   

11.
煤储层物性对甲烷碳同位素分馏的影响   总被引:3,自引:0,他引:3  
段利江  唐书恒  刘洪林  朱宝存 《地质学报》2008,82(10):1330-1334
煤层气作为一种吸附气,在储层中解吸扩散运移时甲烷碳同位素发生分馏。笔者通过采集山西晋城和新疆昌吉不同演化程度的煤样进行解吸试验,系统记录整个解吸过程中甲烷碳同位素组成的变化情况,研究了储层物性对甲烷碳同位素分馏的影响。结果表明:对于基质致密的煤样,解吸气体的δ13C1随时间增加逐渐变重,其变化的速率具有先快后慢的阶段性特点。对于基质疏松的煤样,解吸气体的δ13C1随时间增加先轻后重,这是由于取芯操作及煤样解吸过程中的基质收缩变形破坏了煤体原生结构,从而对正常的同位素分馏效应产生了影响。随着成熟度的增高,煤中微孔丰度增加,气体解吸扩散过程中受的限制增强,同位素分馏效果更显著。压裂裂缝的存在影响了煤层甲烷碳同位素的分馏效果,使得试采过程中井口气样δ13C1的变化规律不明显。  相似文献   

12.
低煤阶煤层气地球化学特征及成因判识是勘探选区重要基础。通过解剖煤层气井气、水组成及其碳、氢同位素特 征,探讨了二连盆地吉尔嘎朗图凹陷煤层气成因。结果表明:煤层气组分中甲烷占93.41%,重烃及二氧化碳含量低,为典 型干气;甲烷碳同位素(δ13C)值介于-62.5‰~-60.1‰之间、氢同位素(δD)值介于-275.1‰~-270.2‰之间、二氧化碳碳的同位 素(δ13C)值介于5.1‰~6.2‰之间,反映其为生物成因气。煤层水来源于大气降水,呈弱碱性、较低矿化度。煤层气井气、水 氢同位素特征表明研究区97%左右生物成因气形成于二氧化碳还原机制。生物气藏是吉尔嘎朗图凹陷重要煤层气勘探方 向,适宜地下水环境是勘探选区关键因素。  相似文献   

13.
木里煤田聚乎更矿区天然气水合物气源探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
木里煤田位于青藏高原东北缘,近年在木里煤田聚乎更矿区中侏罗统窑街组中发现了天然气水合物。为了对天然气水合物气源类型做出客观认识,本文对木里煤田聚乎更矿区中侏罗统窑街组烃源岩样品的有机质丰度、有机质类型、有机质热演化程度进行了详细研究,并在此基础上对比了研究区天然气水合物、煤层气中烷烃气的异同,最终确定研究区天然气水合物成因类型和气源。结果表明:(1)研究区中侏罗统窑街组的泥质烃源岩有机质丰度较高,属好生油岩,有机质类型属于Ⅰ型干酪根,Ro值在0.65%~1.32%之间,有机质热演化程度达到了石油伴生气阶段;(2)天然气水合物烷烃气碳同位素特征显示大部分烷烃气呈现正碳同位素特征系列,相同碳数的天然气水合物烷烃气碳同位素较煤层气轻,天然气水合物烷烃气中甲烷含量相对煤层气较低,且天然气水合物烷烃气δ13 C2值均小于-28‰,属于油型气;(3)中侏罗统窑街组烃源岩碳同位素特征与天然气水合物的碳同位素具有高度一致性,表明研究区天然气水合物气源主要来自于中侏罗统窑街组的湖相泥岩和油页岩。  相似文献   

14.
关于煤成气组分和甲烷碳同位素的几个问题   总被引:1,自引:0,他引:1  
杨宜春 《贵州地质》1992,9(1):99-108
本文运用了两种采样方法和三种气样,100多个样品,分析研究了煤成气组分和甲烷碳同位素。研究结果,提出了多数矿区的煤层甲烷的δ^13C1都比煤层气气藏内的δ^13C1低得多;在论述了我国煤层气甲烷δ^13C1的一些特征和它们的一些变化情况后,得出了解吸气中重烃浓度、δ^13C1与煤变质程度的关系。  相似文献   

15.
煤型气烃类组分的稳定碳、氢同位素组成研究   总被引:18,自引:3,他引:18  
我国主要含油气盆地中的煤型气和油型气烃类气体的稳定碳、氢同位素组成的对比研究表明:煤型气甲烷的碳同位素组成在未成熟到低成熟阶段(R0<0.7%)与油型气无明显差别。从低成熟开始,煤型气甲烷随热演化程度的增高相对油型气逐渐富集重碳同位素。在热演化程度达到1.0左右时,二者δ13C1的差别最大(达7‰左右)。之后随热演化程度的增加,二者δ13C1的差值逐渐减小,当热演化程度达到过成熟阶段之后,二者又基本相近。煤型气和油型气重烃的碳同位素组成,主要受气短岩母质碳同位素组成的控制。重烃的碳同位素组成是鉴别煤型气和油型气的较有效的指标,通常煤型气的δ13C2>-28‰,而油型气的δ13C2<-28‰。热演化程度对煤型气重烃的碳同位素组成影响不够明显,而对油型气重烃碳同位素组成有一定的影响。煤型气(甲烷及重烃)的氢同位素组成主要与源岩沉积时的水介质有关,由陆相淡水环境沉积的源岩形成的煤型气相对富集氢同位素气。煤型气从甲烷到了烷随着碳数的增加,氢同位素组成依次增重,即δD1<δD2<δD3<δD4.  相似文献   

16.
天然气运移的气体同位素地球化学示踪   总被引:16,自引:0,他引:16  
本文通过鄂尔多斯等含油气盆地内岩石酸解烃、罐顶气和同源多产层天然气碳同位素组成的变化,从实例剖析出发,探讨了天然气运移时气体同位素组成的变化及其对天然气运移的示踪。天然气在通过沉积地层中孔隙系统和微裂隙运移时,天然气中的甲烷碳同位素会发生一定的分馏,而乙烷以上重烃碳同位素几乎不发生分馏;在天然气层所在深度,罐顶气甲烷碳同位素组成与天然气一致,在天然气层附近,罐顶气甲烷碳同位素则明显偏离了热演化趋势线;烃源岩酸解烃与其同源的天然气重烃碳同位素组成具有较好的一致性和可比性。由此,可利用气体组分碳同位素的上述变化特征,追索天然气的运移作用。  相似文献   

17.
晋城地区煤层气解吸及碳同位素分馏特征   总被引:1,自引:0,他引:1  
通过晋城地区煤心样的解吸实验,计算获得该区煤层甲烷的解吸率为65.0% ~ 96.2%,预测煤层气井应具有较高的采收率。煤层吸附时间为0.33~8 d,表明生产井短时间内可以达到产能高峰。罐装煤样气体解吸过程可分为两个阶段,第一阶段气体解吸速率较高,第二阶段解吸速率较低。解吸过程中甲烷碳同位素变重的趋势同样可分为先快后慢两个阶段。煤储层气体解吸过程中发生的同位素分馏效应导致井口气样甲烷碳同位素值在一定范围内波动。波动持续时间越长,预示该井的开采稳定性越好,可以获得长期稳定的产气量。通过对煤样解吸气量与甲烷碳同位素的相关分析,获得了总解吸量预测方程,根据该方程可以预测生产井的可采储量。  相似文献   

18.
地球排气过程和费-托合成反应中碳同位素分馏作用使其具有非常大的变化范围,覆盖了目前所说的有机成因气和无机成因气,要求人们重新审视目前判别无机成因气的碳同位素指标。天然气水合物中甲烷和二氧化碳较轻碳同位素值表明,无机成因天然气可以有更宽的同位素分布范围.碳同位素不是天然气成因唯一的判别方法,利用甲烷伴生气体的组分含量、天然气运移方式、赋存特征、与构造作用的关系都可以判断天然气的无机成因.  相似文献   

19.
阜新盆地煤层气成因分析   总被引:2,自引:0,他引:2  
对阜新盆地煤层气成分、气体同位素和热演化特征的分析结果表明:气体组分中甲烷含量高,主要为干气;气体稳定碳同位素值δ(13C1)为-58.00‰~-44.70‰,气体较轻;煤的镜质体反射率为0.42%~1.67%,热演化程度较低.另外,盆地在孙家湾期整体隆升,地下水以地表降水渗入为主,早期生成的原生生物气生成量有限且大多散失,考虑到成煤后两期岩浆活动,现今保存的煤层气为次生生物-热解混合成因煤层气,盆地煤层气的进一步勘探开发应针对此类混合成因煤层气进行.  相似文献   

20.
华北上古生界浅层煤层甲烷稳定碳同位素具有颁布范围广、组成偏轻的总体分布特点,在进入高煤级煤阶段之后开始接近或落入腐殖型常规天然气甲烷稳定同位素分布范畴。该区浅层煤层甲烷稳定碳同痊素偏轻的现象主要起源于热力馏背景之上叠加的解吸-扩散效应,由此导致了煤层气原生带→过渡带→解吸带的垂向分带特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号